
www.manaraa.com

1.1 Background 

CHAPTER I 

I!1troduct i on 

Jet engines, wakes behind airplanes and submarines, mixing layers, 

water disposal in rivers, chimney plumes and all kinds of motion in the 

atmosphere are a few examples of turbulent free shear flows which the 

engineers and the meteorologists as well, wish to predict. There are, 

in fact, many other flows of practical importance that need not to be 

boundary free as in the above flows. Examples of these flows are channel, 

pipe, and boundary layer flows. However, the process of free turbulent 

mixing is prominent in all these flows. Hence the theory of free shear 

flows, in general, applies to these flows as well. 

The above classical flows have long been favorites for turbulence 

investigators because of the easy manner in which they can be generated 

in the laboratory. Another' important characteristic of these flows, is 

their tendency to become fully developed and self-preserving '(at least in 

principle) after a certain· development region. This enables theoreticai 

investigators to approximate the equations of motion based on physical 

grounds,such as order of magnitude analysis. 

At the turn of the century the advances'in the study of turbulent-flow 

~blems were made primarily in the laboratory where basic insights into 

the general nature of turbulent flows were developed and the behavior of 

selected families of flows were studied systematically. For engineers and 

meteorologists there were only a limited number of useful tools, such as 

boundary layer prediction methods which solve the momentum integral equation 

with a high empirical content. Turbulent flow features such as sudden 

changes in boundary conditions, separation or recirculation could not be 

1 

Higher order closure model for turbilent jetsالعنوان:

.Seif, Ali Aالمؤلف الرئيسي:

Taulbee, Dale B.(Super)مؤلفين آخرين:

1981التاريخ الميلادي:

بوفالوموقع:

168 - 1الصفحات:

:MD 618359رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

State University of New York at Buffaloالجامعة:

Faculty of the Graduate School \\\\\\\\\\\\\\tالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

المحاكاة، النمذجة، البرمجيات، الحاسبات الالكترونية، هندسة الطائراتمواضيع:

https://search.mandumah.com/Record/618359رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي للاستخدام

حقوق النشر أو دار المنظومة.

https://search.mandumah.com/Record/618359


www.manaraa.com

1.1 Background 

CHAPTER I 

I!1troduct i on 

Jet engines, wakes behind airplanes and submarines, mixing layers, 

water disposal in rivers, chimney plumes and all kinds of motion in the 

atmosphere are a few examples of turbulent free shear flows which the 

engineers and the meteorologists as well, wish to predict. There are, 

in fact, many other flows of practical importance that need not to be 

boundary free as in the above flows. Examples of these flows are channel, 

pipe, and boundary layer flows. However, the process of free turbulent 

mixing is prominent in all these flows. Hence the theory of free shear 

flows, in general, applies to these flows as well. 

The above classical flows have long been favorites for turbulence 

investigators because of the easy manner in which they can be generated 

in the laboratory. Another' important characteristic of these flows, is 

their tendency to become fully developed and self-preserving '(at least in 

principle) after a certain· development region. This enables theoreticai 

investigators to approximate the equations of motion based on physical 

grounds,such as order of magnitude analysis. 

At the turn of the century the advances'in the study of turbulent-flow 

~blems were made primarily in the laboratory where basic insights into 

the general nature of turbulent flows were developed and the behavior of 

selected families of flows were studied systematically. For engineers and 

meteorologists there were only a limited number of useful tools, such as 

boundary layer prediction methods which solve the momentum integral equation 

with a high empirical content. Turbulent flow features such as sudden 

changes in boundary conditions, separation or recirculation could not be 

1 



www.manaraa.com

2 

predicted by these early methods with any degree of reliability. Hence 

empirical work remained an essential ingredient in many engineering analysis. 

Halfway into this century the computer began to have a major impact on 

engineering computations and the development of a theoretical model capable 

of predicting turbulent flows with a fair degree of accuracy began to 

attract many" researchers in this field. 

The exact equations that govern turbulent flows are well known; they 

are the Navier-Stokes equations. These equations, which are accepted as the 

fundamental basis for turbulent flow problems, are non-linear and strongly 

coupled; hence, an analytical approach leading to closed form solutions is 

not possible. Procedures exist to solve these equations numerically. How-

ever, the energy-dissipating eddies are so small that the computational 

mesh required must be so fine that realistic calculations cannot be carried 

out with present day computer hardware. Therefore it is customary to con-

sider statistical properties of turbulence, which is often sufficient in 

providing engineers with the required information. This approach, however, 

leads to an infinite number of correlation equations that govern the turbul-

ence properties. 

A practical way to close the system" of equations is to employ a turbul-

ent model which approximates higher order correlations (moments) in terms of 

lower order moments that can be calculated. This approximation relies heavily 

on experimental data to determine the model empirical constants and functions. 

Therefore a reliable set of experimental data must be provided to serve as 

a basis for any theoretical prediction methods. 

1.2 Theoretical Model 

The turbulence models are classified either according to the number of 

partial differential equations they employ for turbulent quantities or by the 

order of thE: moment for which the transport equations are written. 
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The first turbulence model which has been applied to turbulent free 

shear flows with some success, ;s Prandtl l s (1925) mixing-length hypothesis. 

This simple model relates the turbulent shear stress uniquely to the local 

mean velocity gradient. Then the partial differential equation for the 

mean flow is transformed to ordinary differential equations for which an 

analytical solution can be obtained. (see i.e. Appendix B) This model, 

among others of its class, often brea~ down in many situations when there 

is more than one mechanism present, piltlducin9, in ~eneral, mo"e than one 
length 6~ velocity scale. 

A second order model is expected to work better in most situations 

because it carries transport equations for second order quantities, so 

that many of the mecbanisms responsible for the production of those quan-

tities are represented accurately. Kolmogorov (1942), Prandt1 (1945), 

Chou (1945) and Rotta (1951) laid the foundation for second order models 

of turbulence. However, analytical solutions for the resulting system of 

equations could not be obtained and a numerical one was not possible at 
that time. 

By the early 70's when advances in computers and numerical methods 

Overcame the mathematical difficulties, several predictions of turbulent 

free shear flows had been made with a fair degree of accuracy. Among the 

reported models are the (k-€) model proposed by Jones and Launder (1972), 

(k-kl) model by Rodi and Spalding (1971) and the (k-w) model by Spalding 

(1972). However, these prediction methods use model constants which were 

thought to be universal, but the calculations showed that they are not. 

For example, a set of constants that predict the flow for plane jets will 

not do so for the roun~ jet. 
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Furthermore the two equation model used the eddy viscosity concept 
2 (e. g. \) t 'V k / E) ,hence they do not keep track of the dynami cs of all the 

second order correlations of importance. This led to the idea (Donaldson, 

1971; Hanja1ic and Launder, 1972b; 'Bradshaw, 1972) that the most promising 

class of turbulence models for making numerical calculations of such complex 

flows is that based on the solution of the approximated equations for the 

Reynolds stresses UiUj and indeed several proposals have been made (see 

section 2.4). 

1.3 . Scope and Object 

In the past decade considerable success (Lumley and Khajeh-Nouri, 1974; 

Launder,. Reece and Rodi, 1975; Reynolds, 1976 and Hanjalic and Launder 1976) 

have been made in predicting shear layer, jet wakes, channel flows, and 

boundary layers with reasonable degree of accuracy .. There were, however, 

some unexplained differences between calculated and measured turbulent 

quantities. 

These discrepancies arise from the neglect of some correlation terms 

in the governing equations, incomplete or inappropriate closure formulations 

for other correlations or simply not having the optimum values for the co-

efficients in closure formulations which may be functionally correct. For 

instance a set of constants in the closure formulations that gives good 

results for one flow situation sometimes does not work well for another flow. 

This is the case with the predictions for the two-dimensional and round jet 

flows (Launder and Morse, 1979). 

Although some fundamental guiding principles, i.e. invarient modeling, 

have been used in formulating clos~re relations, much is developed by ad hoe 

assumptions. With appropriately adjusted constants some of these ad hoa 

closures have performed admirably well. However, one would like to develop 
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closure formulations from first principles using rational procedures. Also 

it would be highly desirable that the model parameters and constants be 

determined as part of the calculation, or at least, determined from certain 

"key" basic experiments. Furthermore, closure formulations and the resulting 

theory should not violate certain mathematical or physical principles, e.g. 

conservation of mass and momentum. 

Using a rational approach, Lumley. (1978) formul ated a second order model 

that is an orderly expansion about a homogeneous, stationary turbulence, the 

large scales of which have a Gaussian distribution. In this formulation care 

is taken to satisfy realizability conditions. This condition implies that 

non-negative quantities are never negative and Schwarz's inequality is 

satisfied. The key coefficients in this closure rela~ion are functions of 

the local turbulent Reynolds number and anisotropy. 

The primary aim of this dissertation ;s to consider the above closure 

formulation and investigate the functional form of the model parameters based 

on the available data for a homogef'lleous decaying axisyrrmetric turbulent flow. 

The closed Reynolds stress and disSipation equations are transformed to curVi-

linear coordinates for the use in the axisymmetric jet calculations. 

The similaritYforms of the resulting system of equations for plane and 

axisymmetric flow are' solved numerically to determine the equilibrium behavior 

of turbulent (isothermal) fully developed and self-similar jets. The results 

are compared with available experimental data with the emphasis on conserva-

tion of momentum. 

C. B. Baker (1980) raised the Question about the validity of the axisym-

metric jet measurements, since they failed. to conserve momentum. He analyzed 

the data of Wygnanskf and Fiedler (1969) for an axisymmetric self-preserving 

jet and argued that the measured mean· velocity profile conserves only half 

of the momentum added at the source. (See also George, Seif and Baker, 1981). 
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On the other hand the most recently measured and calculated profiles are 

fairly in good agreement with Wygnanski and Fiedler profiles when they are 

normalized with their respective centerline value of the mean velocity. 

Hence part of this study (chapter 5) is devoted to examination of the jet 

data (plane and axisymmetric) in contrast with the results of theoretical 

predictions. 
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CHAPTER 2 

The Reynplds Stress Closure 

2.1 Equations for the Mean Flow 

The equations that govern the Imean motion of an incompressible 

isothennal turbulent flow are obtai'ned from -the Navier-Stokes equations. 

By decomposing the instantaneous velocity and pressure into a mean and tur-

bulent component and by taking the time average of all terms, the following 

equations will result (see Tennekes and Lumley 1972). 

Conservation of mass: 

U •• = 0 1 , , 

Conservation of momentum: 
. 

pU. + pU.U •. = - P,. + (l.\U •. - PlJ.u.),. 1 J 1,J 1 1,J , J J 

(2.1) 

(2.2) 

where the overbar denotes the time average, the overdot stands for the 

partial derivative with respect to time,and the subscripts after the 
aU. 

COlllllaS denote the partial differerttiation,eg.Ui,j ::: ax~' The new 
J 

unknown puiu j in the momentum equation is the contribution of the tur-

bulent motion to the mean stress tensor. It is known as the Reynolds 

stress in honor of Reynolds who first developed equation (2.2) in (1785). 

The Reynolds stress puiu j has nine components and hence introduces nine 

unknowns to the equation of motion; however,since it is a symmetric tensor 

(uiuj = ujUi ) the number of unknowns is reduced to six, three normal 

and three tangential components. 

The aim of any prediction method in turbulent modeling ;s to solve 

the momentum equation for Ui,but because of the presence of uiuj in the 

momentum equation, the system of equations ;n (2.1) and (2.2) do not consti-
tute a closed set. Closing this set of equations has b~en of major concern 
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for over a century. An earlier closure, which is known today as the zero 

order model, was originally proposed by Boussinesq in 1877. This simple 

closure model assumes that the shear stress is proportional to the mean 

velocity gradient. This approximation predicts the velocity and shear 

stress profiles for the self preserving turbulent jet (see Appendix C) 

with a good degree of accuracy over most of the flow region, but it fails 

to do so when the turbulence is in non-seTf-preserving state. However, with 

the advances of electronic facilities researchers have tried to develop a 

universaTmethod to predict the Reynolds stress accurately. The most direct 

way to detennine u;uj , of course,is to solve a transport equation for all 

non-zero components of the Reynolds stress. Such an equation, in fact, 

does exist and it will be discussed in the following section. 

2.2 The Reyno1ds Stress Eguation 

A transport equation that governs the Reynolds stress can be derived 

in the following way. The equation for the component i of the instantaneous 

velocity (U1·+u.) is multiplied by u. and the equation for the j component 
1 J 

OJ+U) is multiplied by ui . Summing of the two equations and taking the. time 

average yields the desired equation for uiu j (see Hinze,1959): 

. P 
uiuj + Uk(uiUj),k = - (uiu k Uj,k + ujuk Ui,k) + p (~j,; + Ui,j) 

(i) = convection (ii) = production (iii) = pressure strain 

- [uiu,uk - v(u.u.) k + f (u.o·k + uoo'k)] k J 1J, i:J IJ Jl, 

- 2 v u· kU' . 1, J ,K 

(iv) = diffusion 

(v) = dissipation 

(2.3) 
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As it can be seen from equation (2.3), furth.er unknowns, such as the triple 

correlation and pressure velocity correlations, have been introduced. 

This, of course, adds to the complsxity of the situation. Transport equa-

tions for the third order statistical moment u.u .uk can be again de.rived 
1 J 

in a way similar to the above; nowever,the number of unknowns will grow 

faster than the number of equations. Closing the system in equation (2.3) 

at the second order level (the Reynolds stress closure) will be discussed 

later in this chapter. 

2.3 The Kinetic Energy Equation 

For future reference let us take a look at the turbulent kinetic energy 

equation. Contraction of equation (2.3) leads to an important equation, 

the kinetic energy equation of the turbulence: 

q2 + U. q2. = _[u.(q2~ 2P)] - 2 u:u. u .. + 2 v(u.u .. ) . J,J J p ,j , J , ,J 1 1 ,J ,J 
(i) (ii) (iii) (iv) 

where 7· uiu i . 

- 2v u. ·u .. , ,J 1 ,J 

(v) 

(2.4) 

Equation (2.4) states: The change in (i), the turbulent kinetic energy 

per unit mass and unit time including the convection transport by the mean 

motion, is equal to (ii),the convective diffusion by the turbulence of the 

total mechanical energy or the work by the total dynamic pressure of the 

turbulence~ plus {iii),the work of deformation of the mean motion by the 

turbulence stresses, plus (iv),the work done by the viscous stresses of the 

turbulent motion, plus (v), the viscous dissipation by turbulent motion. To 

close the system of equations '(2.2) and (2.4) at this level, which is known 

in the literature as the one equatl0n model, the terms on the right hand 
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side of equation (2.4) will be approximated employing the eddy viscosity 

concept and specifying a characteristic length scale (see Reynolds 1976). 

However, if we go one step further and derive an additional transport equa-

tion for the dissipation €,then we have the so called two equation model. 

This model eliminates the need for specifying a characteristic length scale 
, 

as function of position throughout the flow by defining the eddy viscosity· 
2"2 as vt ~ q Ie. A detailed discussion of this model and its application 

will be presented jn Chapter three. 

2.4 The Dissipation Rate Eguation 

An exact transport equation for the dissipation rate of turbulent kinetic 

energy (i.e.,the correlation v ui,1u;,1) can be developed from the Navier-

Stokes equations for the fluctuating velocities by appropriate differentia-

tion, multiplication and averaging~ The resulting equation can be written 

as (see Daly & Harlow 1970): 

2 e: + Uk€ k" -2 v u· kU ' .uk . - 2 (vu. ok) , 1, 1,J ,J , ,J 
(i) (ii) 

- v-~ 

-(uk€ + 2 p Uk,;P,j - V€,k) ,k 
(i i i) 

-2 v(ui,jUk,j + Uj,iUj,k) Ui,k 
(iv) 

-2 VUkU •• U. ok 1 ,J 1 ,J 
(v) 

(2.5) 

It is an e~tremely difficult task to consider equation (2.5) in its entirety. 

luckily for high Reynolds numbers flow (i.e. most of the turbulent flows) 

a great simplification will result when an order of magnitude analysis is 
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employed (Tennekes and Lumley 1972). The terms (i) and (ii) which re-

present the generation of e: by the 'stretching of vortex filaments, and the 

destruction through the tendency of viscosity to reduce the instantaneous 

velocity gradients are the most dominant terms. However their difference, 

which really matters,is nearly the same order of magnitude as the transport 

terms (ii;). The terms (iv) and (v) are smaller than other terms by at 

least a factor of R~/2,where RR, is the turbulent Reynolds number; therefore, 

these terms can be safely ignored. Hence equation (2.5) can be written as 

- 2 - 2 \lU. kU ' . uk' - 2 ( \lU. • k ) . 1, 1 ,J,J 1 ,J 

(ii) (iii) (2.6) 

Still the terms on the right hand side of equation (2.6) add further unknowns 

into the equation set governing the; Reynolds stress. These terms are not 

directly accessible to measurement and therefore their approximation can 

be only verified indirectly by determining whether the predicted distribu-

tion of e: is consistent with the measured variation of the turbulent kinetic 

energy through a particular shear flow. Modeling of the transport terms,(;), 

and production-destruction terms,(;i) and (iii),;n equation (2.6) will be 

included in the analysis of the Reynolds stress closure. 

2.5 The Reynolds Stress Closure Approximation 

The Reynolds stress model begi'ns with the equations (2.1), (2.2), (2.3) 

and (2.6). In order to solve equation (2.3) for uiuj,some information about 

the higher order moments U.u ,u k and Pu. . must be provided. Those tenns 
1 J 1 ,J 

will be approximated as functions of the lower order moments. Such approx-

imations will rely heavily on experimental data to determine the proportionality 
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The idea of proposing a model like (2.3) was first suggested by 

Rotta (1951). Some predictions have been recently made following this idea 

by Daly and Harlow (1970), Reynolds (1970) Donaldson (1971), Noat, Shavit and 

Wolfstein (1972), Hanjalic and Launder (1972) and Lumley and Khajah-Nouri (1974), 

to name a few. However there have been widely different views on how to treat 

the third order. moments, the triple velocity correlation in particular. 

Before we proceed with the analysis of closing the Reynolds stress equations, 

a new arrangement of the terms involved in equation (2.3) will be made. For 

convenience in later analysis we will separate the effects of the various 

terms to be modeled and group them according to their rules and functions 

in the equations of motion. 

An expression for the pressure can be obtained by taking the divergence 

of the Navier-Stokes equations for the fluctuating velocity component ui' 

The result;s (Lumley, 1978) 

p .' 
_......a..ll = 2 U •. u .. + U. ·u· . - u·u· .. 

P 1 ,J J, 1 1 ,J J, 1 1 J, 1 J 
(2.7) 

The right hand side of equation (2.7) contains two types of terms. The 

first term is linear in the fluctuating velocity and related to the mean 

velocity gradients while the second and third are nonlinear in the fluctua-

ting velocity. If we conveniently split the pressure such that 
(1) 

p .. 
- ....!l!. 2 U = ..u.· 

p 1,J J,l (2.8) 

(2) 

P i' _...l..!.l. == u. .u. . - u.u. .. 
p 1,J J,l , J,lJ (2.9) 

where the correlations with pel) and its gradients are known as the 

'~rapid terms". While the correlations with p(2) are known as the 
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IIreturn-to-isotropi'tenns. This part is responsible for the return of 

anisotropic turbulence to isotropy in the absence of other disturbing effects. 

Based on the separation of the pressure we may write the pressure strain 

term in equation (2.3) as follows: 

£. _ p(l) £.(2) 
(u .. + u .. ) - - (u • . + U •• ) + (u .. + ti .. ) 

P J ,1 1,J P , ,J J ,1 P 1 ,J J ,1 
(2.l0) 

where pel) and p(2) are given by equations (2.8) and (2.9). 

The primary function of the viscous tenns(2 v Ui,kUj,k)is to dissipate 

uiu j into heat; however, it can also cause interchange of energy among the 

components of UiUj. If we add and subtract the trace of the viscous term 

whi ch is tw; ce g,. the di ss i pat i on rate of the turbu 1 ent energy, we get 

(Lumley 1978) 

2 v u. kU' k = (2 VUe kU' k - 32 eo .. ) + 32 eo .. 1, J, 1, J, lJ lJ (2.11) 

where now the terms in the bracket act to interchange energy amoag the compon-

ents of uiuj while ~ €Oij is responsible for their dissipation. Substituting 

equations (2.l0) and (2.11) into (2.3),the Reynolds stress equation takes 

the form 

U;Uj + Ukuiuj,k = - (uiuk Uj,k + uju k Ui,k) 
(i) (ii) 

- [u~u.uk - v{u.u.) k + R (u.o· k + u.o,·k)] k lJ lJ, P lJ J , 
(i i i) 

(2) 2 
+ [~ (u,. J' + U •• ) - 2 VUe kU ' k + -3 go .. J P , J" 1, J, lJ 

(iv) 
(l) 

+ It (U .. + u .. ) 
P 1 ,J J ,1 

2 - 3 €Oij 
(V) (vi) (2.12) 
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Equation (2.12) states that the substantial change of uiu j during 

convection,(i),is equal to (ii), the production of the Reynolds stress 

from the mean flow, plus (iii),the gradient of the transport from the 

velocity and pressure fluctuation,. plus (iv),the return to isotropy of the 

Reynolds stress, plus (v),the rapid straining change of uiu j plus (vi), 

the mechanical dissipation of uiu j into heat-. 

2.6 A Model for the Dissipation Eguation 

Several forms analogous to that given by-equation (2.6) have been 

proposed to model the dissipation equation. Hanja1ic and Launder (1972) 

suggested the following transport equation for €: 

(i) = 
diffusion 

(2.13) 

(ii) = (iii) = 
production destruction 

where C £ ' Cd and C £2 are model cons tants to be determi ned. from experimental 

data. Lumley and Khajah-Nouri (1974) proposed an equation of the form, 

£2 
€ + Uk €,k = - (£uk) k + $ == , q2 

(2.14) 

where the dimensionless invariant function $ contains the entire mechanism 

for production and destruction of E. Determining the functional dependence 

of $ is not an easy task; however,since $ represents the production/destruc-

tion of € it is reasonable to assume that $ depends on the Reynolds stress, 

the mean velocity gradients ,and the dissipation •. In fact, there are a large 

number of invariants that can be formed on which the function $ might depend. 

This list includes: 

t2.l5) 
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and 

II =-b .. b .. /2 lJ lJ 

III = b .. b.kbk./3 lJ J 1 

15 

b .. is the anisotropy tensor which, is defined by lJ 
u.u. 1-

biJ. = .:.L.J.. - - <5 qz 3 ij 

(2.16) 

(2.17) 

Note that b .. is symmetric, dimensionless, has zero trace, and vanishes lJ 
identically when the turbulence is isotropic. 

finally Rt ~s the turbulence Reynolds number defined to be: 

(2.19) 

The factor of 9 is included in the definition so that R
t 

reduces to the 

traditional form Rt = ut/v, since 8 ~ u3/t and q2 = 3 u3. 

If we assume that the-velocity gradients are not too large, then we 

can expand 111 as given by equation (2.15) into a power series in b .. : lJ 
l 22 t/J = 1/10 + t/J, b.. U . . + tP 2 b.. .9...:. U. . + •.• lJ e: 1,J lJ E: 1,J (2.20) 

where the coefficients are functions of II, III and the Reynolds number. 

If we substitute equation (2.20) into equation (2.14) and retain only first 

order terms, the equation for e: becomes: 

• - 2 
e + Uke: k = - (e:uk) k - 1/11 e: b .. U.. t/J e: , , lJ 1,J- 0qz (2.21) 

Now what remains is to model the transport term of sand to determine the 

functional dependence of 1/1
0 

and the value of t/Jl. However, there is no reli-

able comprehensive set of data for a general flow from which the various para-

meters in the closure can be evaluated at the same time. The best that can be 

done is to assume a hierarchy of simpler flows in which progressively more 
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(or less) of the unknown terms vanish identically sothat the unknown co-

efficients which occur in the assumed closure for the remaining terms 

can be progressively evaluated. This progressive evaluation can be utilized 

since the closure parameters are assumed to be universal. 

2. 7 Decay of Isotropic Turbulence 

To determine ~o let us consider a simple,homogeneous,decaying, isotropic 

turbulence without the mean strain. For this class of flows the governing 

equations are the turbulent kinetic energy equation (2.4) and the dissipation 

equation (2.21). They simplify to: 
. 
l = -2e: 

2 •. e: 
e = -~ = o q2 

If we assume that the turbulent energy decays as 

7 'V t-n 

where t denotes time and n is an exponent to be determined, 

(2.22) 

(2.23) 

(2.24) 

then from equation (2.22) and (2.23) we obtain the following relation 

for ~O: 

tfJ = 2(n+1) 
o n (2.25) 

The asymptotic values for the exponent n according to Hinze (1975) is that n=1 

in the limit Rt~ and n=2.5 when Rt~' This suggests that: 

The grid-generated isotropic turbulence experiments of Comte-Bellot and 

Corrsin (1966) indicate that the exponent n lies between 1.2 and 1.35. For 

a constant ~O model, various numerical values for $0 has been proposed. 

Hanjalic and Launder used ~b = 4.0; Launder, Reece and Rodi (1975) used 

$0 = 3.8; Zeman & Lumley (1976) suggested that $0 = 3.8; and Reynolds (1976) 
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recommended that Wo = 11/3. 

A constant Wo model had both successes and failures in the 70's. More 

discussion on these models will be presented in Chapter 3 where the two equa-

tions for the k-e model are reviewed. More recently Lumley (1974), Hanja~ic and 

Launder (1976), Reynolds (1976) and Lumley and Newman (1977), and others 

have proposed a variable wOo Hanjalic and Launder (1976) assumed that Wo 
depends on the turbulent Reynolds number only and based their formulation 

of ~O on the data of Batchelor and Townsend (1948) ·which is, in fact, a 

low Reynolds number flow. They suggested; 

Wo = 3.6 [1 - .23 exp (-.14 R~)] (2.26) 

Lumley and Ne\'fl1an (1977) have also included in the dependence of 

"'0 the first invariant of the anisQtropy II. The form they proposed based is 

on the experimental data of Comte-Bellot and Corrsin (1966) for which 

R!>lOO; they suggested: 

Wo = l~ + .98 exp (-2.83/~) [l-~n (1-55 II)] (2.27) 

Chung(1978) reexamined Batchelor and Townsend (1948) and Comte-Be110t and 

Corrsin (1966) data and suggested the following: 

Wo = 3.55 [1- .211 exp(-R~/2.5)] + .45 exp (- 36.7/~) (2.28) 

ffe argued that the inclusion of II in the Wo dependence is correct based 

on theoretical grounds, but unnecessary in practice. Figure 2.1 shows a 

comparison of the above three models for Wo for a wide range of Rt . As 

can be seen from Figure 2.1, the Lumley and Newman (1977) and the Chung (1978) 

formulations for Wo approach nearly: the same value when RQ, > 200. From 

Figure 2.1 it can be seen that the formulation of Lumley and Newman 

(equation (2.27») is in error for small Reynolds numbers; in particular, when 
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5 < R,e < 100 

This is because the formulation of equation (2.27) was based on high 

Reynolds number free shear flows. More important is that the basic 

assumptions in forming the Reynolds stress and the dissipation equations 

are valid only for high Reynolds number flows. Equation (2.27) worked 

remarkably well in the wake calculations of Taulbee and Lumley (1980) and 

in the present study; for both flows the turbulent Reynolds number is in 

the high range, Rt > 400. 

2.8 Oetennination of $, 

In order to determine $1 let us consider a turbulent flow subject to 

constant strain. Examples of such flows are: 

a) Turbulence distorted by plain strain (Tucker and Reynolds 1968). 

b) Turbulence passing through contractions (Ubero; 1956). 

c) Nearl y homogeneous shear flows (Champagne et aLl 970). 

The rate of strain was nearly constant in all of the above experiments. 

For these flows the energy and dissipation equations can be written as: 

O?_ -
Ot - - u.u. U. . -2e: 

1 J 1 ,J 

O€ 
Dt =- e:2 

$1 e: b .. - $ -
1,J 0 qz 

(2.29) 

(2.30) 

where ~t stand for total derivative. The empirical parameter $, can be 

obtained from equation (2.30) using the above experimental data. In fact 

Rod; (1972) predicted the flows of Tucker and Reynolds (1968) and Champagne 

et al.(1970) quite well by taking $1 = 2.4 and ~l = 4 respectively, however 

when $1 = 2.4 was used in other flows, it gave values of e: which were too low 

and there was hardly any decay of the kinetic energy. Reynolds (1976) reexamined 
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the same experiments cited above and suggested that l/J1 = 2.0 is suitable 

for most free shear flows. Launder et ale (1972) give l/J l = 3.10 and 

Hanjalic and Launder (1972) used !JJ,= 2.9 in the calculations. The variation 

of "'1 from one flow to another suggests that l/Jl can not be a universal 

constant,but some function of the state of turbulence. It is desirable 

to determine the functional dependence of l/Jl; however,lack of reliable 

experimental data makes it difficult at this time to predict a variable !JJ1. 

The value of ~l = 2.0 seems to work well in the present study with the ~O 

given by equation (2.28). 

2~9 Return to Isotropy 

In the absence of other influences the turbulence components inter-

change energy so as to become' more '.nearly equal. This return to isotropy 
is produced mainly by the pressure fluctuation term and in part by the 

viscous term found in term [iv] of equation (2.12). The problem now 

is to analyze the correlations that control the return to isotropy. In 

order to do so let us consider a homogeneous flow without mean velocity 

gradients. The Reynolds stress equation (2.12) for this flow becomes: 

p(2) 2 2 
u 1· u. = [- ( u. . + u. .) - 2 vu· kU ' k + -3 e: 0 .. ] - -3 e: 0 1" J" ( 2 . 31) J ,p l,.-J J,l 1, J, 1J 

The quantity in the square bracket 'is responsible for the return to isotropy. 

It is a symmetric tensor, it has zero trace,and it vanishes identically when 

the turbulence is isotropic. 

The first return to isotropy model wa~ proposed by Rotta· (1952). 

He assumed that the return to isotropy is linearly related to the deviation 

from isotropy; that is, 
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4.0 

3.0 
II I< 
lC 

+ 9.9 R~1/2 

2.0 a ~ 

Ol-r------r------r------~----~------~------
2.0 4.0 6.0 8.0 10.0 

(R-1/ 2) X 100 
t 

Figure 2.2 Variation of the Return to Isotropy Function with the 
Turbulent Reynolds number for a fixed value of (-II). 
Data of Comte-Bel1ot and Corrsin (1966). 



www.manaraa.com

22 

(2) 
p 
- (u .. + u· .) :: - C1€ b"J' P 1 ,J J ,1 (2.32) 

where C1 is an empirical parameter to be determined and bij is an 

anisotropic tensor which satisfies the prescribed requirements and 

defined by equation (2.18). In previous works, C1 has been taken as a 

universal constant with values ranging from C, :: 2.5 as suggested by 

Reynolds (1976) to the value of C, = 6.7 as given by Wyngaard and Cote 

(1974). More recently Lumley and Khajeh .. Nouri (1974), Hanjal ic and 

Launder (1976),and·Lumley and Newman (1977) have proven that C1 may be 

a function of several variables. Now since we have included part of the 
I 

viscous effect in the return to isotropy term we may write equation (2.32) as: 

p(2) 2 
- (u .. +u .. ) - 2 vu. kU ' k +-3 EO •• 
I) , ,J J , , " J, 1 J = - e: q, •• lJ (2.33) 

where the inclusion of € in the right side of Equation (2.33) makes the ex-

pression dimensionally correct with the function q,ij dimensionless. q,ij·has 

zero trace and is responsible for the return to isotropy. If we replace $;j 

by Clb ij as is commonly used in the literature, and substitute equation (2.33) 

into equation (2.31) 'we get, 

where C1 is the same as in equation (2.32). 

2.10 Determination af C, . 

(2.34) 

It can be seen from equation (2.34) that C1 can be determined by the 

history of the Reynolds stress, the present values of bij , and the dissi-

pation. Hence we can write in general: 

(2.35) 
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Now if we consider equation (2.34) as a governing equation for the 

anisotropic tensor bij it can be shown after simple manipulation that 

%r (bij ) = - ~ (Cl -2)bij q 

If we define a non-dimensional time T by q2/ g , then 

g 
(-)dt = dT qz 

and the equation for bij can be written in the form 

From equation (Z.38) it can be seen that we must have 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

and C1 .= 2 corresponds 

that bij remains unchanged. 

to the no return to isotropy which implies 

To determine the functional dependence of Cl we make use of the experi-

mental data. Lumley and Newman (1977) have shown by using Comte-

Bellot and Corrsin's data (1966) tMat in a vanishing small aniSotropy, Cl 
takes the fonn~ 

C = 2 + 8 R-l/2 
1 .t 

(2.40) 

However, the linear behavior of C1 in the limit Rt-+GO and II-+o remains as 

an assumption. (See Figure 2.2). Chung (1978) attempted to reproduce the 

same result as in equation (2.40) and found that (in the limit R.t~ and 

II~) the dependence of Clan II ;s stronger than that on R,t. Nevertheless 

he accepted the basic assumption ih (2.35) and expressed C, as follows: 

C, = 2 + y{II,III)/u(R1 ) (2.41) 
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where ~(R~) is obtained by considering the average time scale of the return-

to-isotropy over the spectral space - the approximate form being given by 

(2.42) 

and where y is a correction to the time scale due to the anisotropy. The 

functional dependence of ~ on II and III was determined by the use of the 

data of Comte-Be110t and Corrsin (1966), Mills and Corrsin (1959), and 

Uberoi (1956);the approximate form of y is 

y = 110 II exp (-83 113/ 2)[1-2.47 1111/3 + 2.24 III] (2.43) 

A careful examination of 12 diffe~ent experiments' of the Comte-Bellot and 

Corrsin data confirms Lumley and Newman findings if Cl behaves linearly in 

the limit R~~, see Figure 2.2. The fact that C,+2 when R~~ and the data 

of Figure (2.2) support the validity of equation (2.38); the form for C1 
proposed by Lumley and Newman (1971) is given by: 

Cl = 2 + (~ + 3 I II + II) F (Rt ,. II, II I ) (2.44) 

The realizability condition must be imposed. C1+2.0 when either component 

of energy vanishes,or Schwarz's inequality ;s violated. It can be shown 

(Lumley 197B) that in order to satisfy the realizability condition we must 

have: 

~ + 3 III + II ~ 0 (2.45) 

The function F(R~, II, III) must be determined such that ~+O as R~+O, 

F~.l R~-·5 when rI~ and Rt~' and it fits the experimental data. The 

functionaT form that satisfies the realizability conditions and fits:the 

data is given by: 
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1 1/2 [ 1/2 , C1 = 2 + (9 + 3 III + II) exp (-7.77/R~ ) 72/R~ 

+ 80 tm (1 + 62.4{-II + 2.3 III})] .. ' ; 
--'~~~---

(2.46) 

Equation (2.4·') worked quite well in predi'cting the plane and axisyrrmet-

ric wakes (see Taulbee and Lumley 1980), and it did as well in the present 

study. When equation (2.41) was used in predicting the axisymmetric jet 

(Rt > 400), however,there were no significant changes in the final result. 

Figure 2.4 shows that equation (2.41) is violating ,the realizability 

condition (2.45), since for a neQative III. the first invariant II has a 

limitinQ value of IIII < 1/12 (Lumley 1978) 

2.11 The Rapid Terms 
The pressure-velocity gradient term of the pressure strain rate contribu-

tion· can be obtained by solving equation (2.8) using Fourier transform for 
p(1 ) • 

Assuming· a homogeneous mean field the rapid term can be written as 

(2.47) 

where 

(2.48) 

and Sqj is the spectrum of the Reynolds stress. 

An expression similar to equation (2.47) was first derived by Rotta (1951). 

A ~el for Ipiqj has been proposed by several authors such as Hanjalic and 

Launder (1972), Launder, Reece and Rodi (1973) and Lumley (1975). 

It is apparent from equation (2.47) that the rapid term arises from the 

interaction of the turbulence with the mean velocity gradients. The fourth 

order tensor Ipiqj must satisfy the following constraints (Lumley 1978): 
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Synmetry: 

Ipiqj = Ipijq and Ip;qi = Iipqi 

Incompressibility: 

Ipiij = 0 

Normalization: 

(2.48a) 

(2.48b) 

(2.48c} 

When the turbulence is isotropic, equation (2.48) can be integrated 

._direct1y;hence (Crow, 1968, Rotta 1951a), 

Ipq;j = (4oij opq -.opiOqi - 0pjOq;) q2j30 (2.49) . 

Iri general, Ipq;j would depend at least on the anisotropic tensor bij 
and the Reynolds number. Hanjal icand Launder· (1972) used a model for 

Ipqij with linear and quadratic terms in u;u j . Later, Launder, Reece and 

Rodi .(1975) dropped the_quadratic tenns,but· Lumley and Khajeh-Nour; (1974b) 

also used a non-linear term. However, Lumley (l975a) argued that the model 

must be linear in uiu j . Following Lumley (1978) we take the tensor Ip;qj 

to be related to combinations which are linear in the anisotropic tensor 

A form which satisfies all the above requirements is given by 

(2.50) 

where c is an empirical constant. 

The constant c should be evaluated using experimental data for a homo-

geneous turbulence from such experiments as of Tucker and Reynolds (1968) 
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and Champagne, Harris and Corrsin (1970). Reynolds (1976) found that 

c = -.1 for the experiments of Tucker and Reynolds while c = -.2 worked 

better for the Champagne, Harris af!td Corrsin expe~iments; finally·, 

he recomnended c = -.15. Launder, Reece and Rodi (1975) use c = -. 145. 

Taulbee and Lumley (1980) use c = -.15, and this· value will be used in 

the present calculation as well. 

2.12 Transport Terms 

The remaining unknown correlations in the stress equation (2.12) are 

the diffusive transport terms. The contribution of the viscous terms to 

the diffusion is negligibly small for turbulent free shear flows, hence we 

will ignore that term. The transport by turbulent velocity fluctuations 

can be approximated by formulating. a dynamic equation for uiuju k. 

Hanjalic and Launder (1972) simplified the exact equation for uiujuk 
to obtain the following; 

(2.51) 

where 6 is a fixed constant. However, several computations (Rodi 1972, 

Launder and Morse 1978) have been carried out using the simpler model pro-

posed by Daly and Harlow (1970); namely, 

(2.52) 

Lumley (1978a) argued that homogeneous turbulence is observed to be Gaussian 

in the energy containing range, even in the presence of non-zero velocity 

gradients, and that departure from Gaussian behavior is associated with 

inhomogeneity. This is consistent with the fact that the fluxes uiUjUk 

cannot be non-zero if the .turbulence is Gaussian. 

By assuming a weakly inhomogeneous turbulence and performing an order of 
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magnitude analysis of the exact equations for uiujuk' it can be shown that 

(see Lumley 1978a): 

(2.53) 

and 

(2.54) 

where 

(2.55) 

and 
--2 --Gk = ukup q ,p + 2 uqu p (uquk),p (2.56) 

C1 1s the same coefficient given by equation (2.39) and b is an arbitrary 

constant. The only condition on b is that b<l in order for this model to 

relax to Gaussian. Taulbee and Lumley (1980) took b=O but indicated that 

a b slightly greater than zero would give a better agreement with 

the experiments. Notice that if i f j f k equation (2.53) reduces to the 

model (2.51') if 

a - 2 - 3el (2-b) (2.57) 

The pressure diffusive transport has been neglected in many recent 

"computations. Bradshaw and Ferries (1965) indicated that the measured 

energy balance closes quite well when the pressure-diffusion term in their 

k - equation is neglected. Rod; (1972), Hanja1ic and Launder (1975) and 

Launder and Morse (1972) have totally negl ected the pressure transport ; n 

their models because of lack of evidence of its importance. In order to 
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account for the pressure diffusion we assume homogeneous flow and Fourier 

transform equation (2.9). The second (return to isotropy) part of the 

pressure is then given by; 

_ [p(2)]/p = (~)[UiUj] (2.58) 

where [ ] dencne~FouMer transfornt. 

Multiplying equation (2.58) by uk,averaging, and integrating the result 

yields 

- ;m- Uk = f ti;j) 5;jK dJS.. 
Ie 

(2.59) 

where 5, .. is the soectrum of u.u.uk. JK . , J 
We will define 

1. . = ..1....J. f K .• K.. 

lJpqr ~2 5pqr de (2.60) 

and attempt to express the integral as in linear combination of the 

triple velocity correlation. It follows from symmetry that: 

Iijpqr = Ij;pqr and Iijpqr = Iijqpr 

For incompressible flow· we further require: 

Iijpqj = 0 and Iiippr = upupu r 

The most general linearfonn of uiu,u k contains five coefficients. 
. J 

However by applying the above conditions all the coefficients can be 

detennined and we obtain~ 

(2.61 ) 

Hence, 

(2.62) 

-r where q ur is given by equation (2.54). 
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2.l~ Transport TerMs for e 

It is not possible to write an exact equation for the transport of 

dissipation,and equation (2.14) has been proposed by an analogy with the 

transport equations of velocity and temperature variance. Hence, we have 

to model the transport flux €U k by analogy with the transport term for 

Reynolds stress. 
-2 

By assuming that qZ /e does not vary too much across the width of the 

flow (i.e.,across the jet) and that if e vaniShes,qZ also must vanish 

such that 7/e remains' bounded so that 

~ q ~ e , (2.63) 

it follows that 

(Z.64) 

Thus the analogue to equatiqn (Z.64) is: 

'-:z' ... , '. . 2" 
q (euk),k = me(q + 2P/P}ukJ,k (2.65) 

where we have included the pressure- transport in the rig.ht siqe of 
-

equation (2.65). 

From equation (2.65) we can again see by analogy that if the transport 

of 7 can be modeled as in section (Z.10), the transport of e can be modeled 

in a similar way. Using equation (Z.6Z) for the pressure we obtain 

3 ""2-z eU k = Sm(e/q ) q Uk (2.66) 

Substituting equation (2.54) into equation (Z.66) we obtain for the dissi----

pation flux: 
2 

eUk = - (2-9bi~)C1+5 (f)', [uRu p + 2u i uk U;Up/q
2

Je:,p (Z.67) 

where we have replaced u;uj,k in equation (2.51) by (uiuj/m€)e,k 

We have to note that .equation (Z.67) does not introduce a new constant 

since Cl is the same parameter obta'ined in the return to isotropy part.' 
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This completes the Reynolds stress closure which consists now of the 

equations for the mean motion; equations (2.1) and (2.2), and the six equations 

for the Reynolds stresses components, three normal and three tangential 

components, and the equation for the dissipation rate of energy. 

2.14 . The Final Form of the Reynolds Stress Closure. 

The Reynolds stress equation is now given by 

U,.U. + Uk(U:U:-) k = -(uku. U. k + uku. u. k) J , J , 1 J, J 1, 

2 3.2 1 l Cl -2 
[ 3(2-b}Cl € Gijk - (2-9b/4)Cl+5 € {3{2-b)C1 Gko ij 

C,-2 
+ ( 3(2-b)C

1 
- to)(GjO ik + Giojk)}],k - Cle bij 

2" 2 + 2Up,q (I piqj + Ipjq;)q - 3 €O;j (2.63) 

where 

(2.69) 

(2.70) 

and 

. ui u. 1 
b.. = .:..L.J. - -3 0.. (2.72) 

lJ qz 1J 
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The dissipation equation takes the form 

(2.73) 

The above system of equations consisGof 4 equations for the mean 

flow and 6 equations for the Reynolds stress components and an equation for 

the dissipation rate of energy. This set ofll equations is sufficient 
, 

to solve for the eleven unknowns, namely 
222---u, v, w, p, u , v , w , uv, UW, vw and t. 
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CHAPTER 3 

The Two Eguatlon Models 

3.1 Introduction 

The two equation models employ two partial differential equations 

of turbulence in addition to the governing equations of the mean motion. 

For example, the model of Jones and Launder (k-£ model) solves for k, 

the kinetic energy of turbulence and £, the dissipation rate of the 

kinetic energy of turbulence, while that of Rodi and Spalding solves for 

k and kt in their (k-k1) model where k is the same as above and t is a 

characteristic length scale of turbulence. Spalding (1972) proposed the 

k-w model which is similar to the above where he replaces £ by (~)2. 

These models, among others of their class, showed some success in the 

early 70's in predicting the turbulent flow field, in high Reynolds 

number flows such as mixing layers, turbulent jets and near wakes. Less 

success has been reported where these models were applied near wall regions 

or in far-field jets or wakes (Launder 1975). 

In the early stage of this study a great amount of time has been 

spent on the applications of the standard version of the k-£ model. Most 

of the calculations have been carried out for the turbulent free jets 

(plane and axisymmetric jets). The primary reason for using the k-£ 

model was to test several numerical schemes which were developed for use 

in solving the system of equations in the Reynolds stress closure 

(chapter 4.) 

3.2 The Eddy Viscosity Concept 

Before we turn our attention to the k-E model we must familiarize 

ourselves with eddy viscosity concept since it is an essential ingredient 
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CHAPTER 3 

The Two Eguatlon Models 

3.1 Introduction 

The two equation models employ two partial differential equations 

of turbulence in addition to the governing equations of the mean motion. 

For example, the model of Jones and Launder (k-£ model) solves for k, 

the kinetic energy of turbulence and £, the dissipation rate of the 

kinetic energy of turbulence, while that of Rodi and Spalding solves for 

k and kt in their (k-k1) model where k is the same as above and t is a 

characteristic length scale of turbulence. Spalding (1972) proposed the 

k-w model which is similar to the above where he replaces £ by (~)2. 

These models, among others of their class, showed some success in the 

early 70's in predicting the turbulent flow field, in high Reynolds 

number flows such as mixing layers, turbulent jets and near wakes. Less 

success has been reported where these models were applied near wall regions 

or in far-field jets or wakes (Launder 1975). 

In the early stage of this study a great amount of time has been 

spent on the applications of the standard version of the k-£ model. Most 

of the calculations have been carried out for the turbulent free jets 

(plane and axisymmetric jets). The primary reason for using the k-£ 

model was to test several numerical schemes which were developed for use 

in solving the system of equations in the Reynolds stress closure 

(chapter 4.) 

3.2 The Eddy Viscosity Concept 

Before we turn our attention to the k-E model we must familiarize 

ourselves with eddy viscosity concept since it is an essential ingredient 
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in the majority of the two equation models, which do not solve for the shear 

stress Wi directly. This concept assumes a simple proportionality relation 

between turbulent transport and mean velocity gradient. The proportionality 

constant is the eddy viscosity vt . 

defined as (Boussinesq 1877) 

-uv - aU - v -t ay 

For turbulent free shear flows vt is 

(3.1) 

Here vt is not a property of the fluid as in the laminar case, but depends 

solely on the state of turbulence. Hence vt can vary from Qne~.flow to 

another,and also it may vary across the flow. / 

The zero equation model which employs this principle (see Appendix B) has 

had a variety of success and failures in predicting turbulent flow fields. 

Tennekes and Lumley (1972) argue that the eddy viscosity models are ex-

pected to be successful when the turbulent flow is characterized by single 

time and length scales. This suggests that in the similarity regions (the 

far field) of turbulent free shear flows, this simple model should provide a 

reasonable prediction of the mean velocity profile and in turn the shear 
, 

stress uv. In the k-e model formulation it is natural to assume that the 

eddy viscosity will depend on the intensity of turbulence through k, the 

kinetic energy of turbulence, and e,the dissipation rate. Therefore we 

assume~ 

or 

2 
"'t '" k Ie 

"'t 
2 = c ! 

1J e: 

where C is a proportionality constant that will be determined. 
j.l 

(3.2) 

(3.3) 
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3.3 The k-e Closure Model 

The k-e closure consists of the equations for the mean flow,(2.l) 

and (2.2), the kinetic energy equation, (2.4),and the equation for the 

dissipation rate of energy, (2.6). For high Reynolds number flow with 

constant density and viscosity the system of equations can be written 

as follows: 

where 

U •• = 0 1 ,1 

u. + U.U .. = - 1 P . + [vUe • - u.u.] . 
1 J 1 ,J P ,.1 1 ,J 1 J ,J 

k + U.k. 
J ,J = -

. 
e + U.e . 

J ,J 

u.u. 
k ..1...J.. = 2 

e = 2\1 u. .u. . 1,J 1,J 

and Cel and Ce2 are the model constants. 

The diffusion tenns, the first terms on the right hand side of 

equations (3.6) and (3.n, will be modeled in a much simpler way than 

was done in Chapter 2. It will be simply assumed that k and € diffuse 

down their gradients. Thus, we assume 

and 

V t uJ.(k + PIp) = -- k . Ok ,J 

_ v
t LI.e = - € • J oe ,J 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

where Ok and 0e: are constants to be determined from experiments,and vt ;s 

the eddy viscosity given by equation (2.3) which ;s determined by 
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the calculations. Hence with equations (3.10) and (3.11) the system. 

equations (3.4)-{3.7) constitutes a closed set which is applicable to any 

turbulent free shear flow. 

The continuity equation. (3.9) and momentum equation (3.5) are written 

in Cartesian fonn in Appendix A. In the momentum equation only the first 

order tenns will be retained. The estimate of the neglected terms amount 

to only about 8% of the total 'momentum transport when integrated across 

the flow. This particular point will be discussed in Chapter 4 when we 

sol ve for all the components of the Reynolds stress. 

3.4 The Final Form of the k-€ Model 

Now let us consider the application of the k-€ model to boundary free 

shear flows by introducing the following assumptions: 

i . 

i i . 

ii i. 

Steady motion (~t = 0) 
a2u High Reynolds number flow (~. ~yf ~< a~;) 

Derivatives with respect to x are negl igible compared to those 

with respect to y. 

iv. The flow field is far away from the source (k2/€ = constant). 

v. The W component of the mean velocity ;s zero and ~z = 0, 

(in the axisymmetric case ~ = 0). 

Based on these assumptions the final form of the k-€ closure model is 

given by: 

Continuity Equation: 

i 
2J! + L.. li....Y.. = 0 ax yl ay (3.12) 
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Streamwise Momentum (see Appendix A) 

U aU aU _ 1 a (i-) - + v- - - -=- - y uv ax ay y, ay 

Turbulence Viscosity Hypothesis 

- aU -uv ::. vt ay 

vt 
2 

= C L 
j.L. e: 

Turbulent Kinetic Energy 

Turbulent "Dissipation" Rate 

U 2£ + Voe: = L . .L (yi vt ae:) + C e: (oU)2 C e:2 
ax oy y' ay (ie: oy e:l k vt oy - e:2 k 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3. 17) 

where i=o for the plane jet and i=1.0 for the axisymmetric turbulent jet. 

·The model constants as originally proposed by Jones and Launder (1972) 

for high Reynolds number flow are given in Table 3.1. 

C Ce:l Ce:2 (ik (i 
II e: 

'.09 1.55 2.0 1.0 1.3 

Table 3.1 Empirical values of the k-e: model constants 
as suggested by Jones and Launder (1972). 

3.5 Similarity Formulation 

An important feature of free turbulent shear flows is their tendency 

to become self-similar after certain development regions. As mentioned 

earlier, this is consistent with the fact that. their motions are chara-

cterized by single velocity and length scales. 

Consider either a symmetrical, two-dimensional or an axisymmetrical, 
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three-dimensional jet (Figure 3.1). For the velocity scale we chose the 

centerline value of the mean veloci'ty Urn' For the length 1 at which the 

mean velocity U is half its maximum. Hence for self-preserving flow we 

define: 

and 

where 

Further,the components of the kinematic turbulence stress tensor 

can be expressed as~ 

-:1 = U~ g3(n) 

uv = u~ g4(n) 

(3.18) 

(3.19) 

(3.19a) 

(3.20) 

Similarly, the kinetic energy of the turbulence k and the dissipation 

rate e, assume the following form: 

k = U~ ~(n) 

U3 

e = SI.(x)E(n) 

(3.21) 

Substituting (3.18) and (3.19) into (3.12), the continuity equation 

becomes: 

(3.22) 
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Similarly,if we substitute (3.18)-(3.20) into equation (3.'3) the 

momentum equation becomes: 

dU d l' n dUm 
R. m ffl R. ffl + hf' + (1), + N ( ) Urn dx - ax n ., n 94 2U dx 9,-92 n m 

(3.23) 

where the prime denotes differentiation with respect to n. 

Now for the flow to be self-preserving (self-similar) the equations 

(3.22) and (3.23) must be ind~pendent of x. Hence the coefficients involved 

in these equations must be constants. Therefore for similarity solutions 

we must have: 

dR. : a 
dx 1 

where ao and a1 are constants. 

(3.24) 

(3.25) 

Equation (3.25) suggests that in the self-preservation region the 

turbulent jets (plane or axisymmetric) spread linearly with x. That is, 

t = alx (3.26) 

Equation (3.24) is satisfied if Um behaves like Urn ~ xn for any value 

of n. To determine the proper value for the exponent n we impose the 

momentum integral constraint,which has to be satisfied at any cross section 

x. .From Appendix A, the momentum integral constraint reads 
CD ~-

2 wi f [UZ + ~ - v ;-2 ] yidy = Mo/p (3.27) 

o 
where 

(3.28) 
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y,V 

Centerline ---;;..-..;. 
.. 

x,U 

Figure 3.1 Syrrmetrical Turbulent Jet in Still Surrounding. 

j=l 
I 

j=J 

\f-+--jl J--...--j a~J--+--'+L ~f ~ 
.. i;max 

~ = 0 

Figure 3.2 Finite Grid. 
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In . similarity variables the momentum integral becomes: 
~ 2 

J ~ 
g2+g3' - Uo 1 dO "+1 ( + gl - 2 ] n' d ( ) n - 2 ;+1 i+l 2Um !I, o 

In order for the right hand side of equation (3.29) to be a constant 

we must have; 

u; !l,i+l = constant 

Hence from equation (3.26) and (3.30) the centerline velocity of self-

preserving turbulent jet must have the following decay law: 

(3.29) 

(3.30) 

(3.31) 

The constant of proportionality in equations (3.26) and (3.31) will be 

determined based on experimental data of the plane and axisymmetric jet 

respectively. 

Now the continuity and momentum equations take the form; 

- a,[i;l f(n) + nf'(n)] + 1, (nih(n))' = a 
l') 

where a, is a constant for a particular flow. 

The continuity equation can be integrated directly to give 

h(n) = :t [n i +1f _ i+1 In nifdn] 
1 2 

n 0 

If we substitute equation (3.34) into equation (3.33), the momentum 

equation becomes: 

(3.32) 

(3.33) 

(3.34) 
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. +1 2 1 In. 1 k2 . a, T [f +,. fl n'fdn] + -,- [ell r n1fl ]' 
non 

(3.35) 

where we have used the eddy viscosity hypothesis (3.14) and (3.15); that is, 

(3.36) 

If we substitute (3.18) and (3.21) into equation (3.16) and (3.17) 

and USe equation (3.24) to eliminate the cross stream component of the 

mean velocity, the energy and dissipation rate "equations become: 

C K2 . . 1 
(~ 'KI)' + l!- [K' <Tk r n a1 2 

e 2 n 
(~~ "iEt). + a1 i~l [E I J nifdn + (5-i) niEf) 

o 

+ e (E)(C K2) i f12 _ e _E2'ni 
€ 1 K lJ r n €2 K = 0 

Now let us define the term involving the integral in the above 

equations as fOl'1ows: 

" G(n) = f nif(n)dn 
o 

Further the momentum integral equat10n (3.29) can be written as 
n 

P(n) = f ~(n) ni dn 
o 

where we have neglected the turbulence contribution to the momentum 

integral and we have the following conditions on P(n):" 

(3.38) 

(3.39) 

(3.40) 
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P(o) = 0 (3.41a) 

(3.41b) 

The parameter a, which represents the spreading rate of the jets is a 

scaling factor in the above system of equations and it can be eliminated 

if we define a new variable such that: 

; = ta," (3.42a) 

d = ta,do (3.42b) 

where d is the jet diameter. If we write equation (3.3') as 

i+l 
U = C u (.9.)2 (3.42c) m 0 x 

where C is am empirical constant,then the second condition (3.41b) becomes 

The final fonn of the k-e: closure model for the self-preserving Jet 

is now given by the following system ordinary differential equations: 

2 
[(C

p 
f-) ;ifl]1 + i~l [Gf l + ;i f2] = 0 (3.44a) 

(a) (b) 

2 i 
[(C L) L K1

]' 

P E <1k 

(a) (b) (c) (d) (3.44b) 

K2 i . 1 
[(Cpr- ) ~ EI] + ~ [GEl + (5-i) ~i Ef] 

(a) e: (b) 

K2 E i I E2 
+ C (c --) - ~ f·2 - ~i C --= 0 e:1 u E K e:2 K 

(3.44c) 

(c) (d) 
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(3:44d) 

(3.44e) 

Here we have expressed the integrals which result from the continuity 

equation and from the momentum running integral in differential fonn-

equations (3.44d) and (3.44e)- so that the above system of five equations 

can be solved simultaneously. Hence with these constraints both the 

momentum and the continuity equations will be automatically satisfied. 

The tenns in the above equations can be identified as: 

a) Turbulence diffusive transport. 

b) Convection or advection. 

c) Production by the mean motion. 

d) Mechanical dissipation or destruction. 

Boundary Conditions 

The only constraint which has been imposed on the system of equa-

tions is that the requirement that the non-dimensionalized mean velocity 

at line of symmetry (~=O) be equal to unity. Since the exact values of 

the energy and the dissipation at ~=O are not known, we can only assume 

that their derivatives at the line of symmetry are zero. At the outer 

edge (~~) we require that the functions f, K, and E and their deriva-

tives vanish. The equations (3.44d)and (3.44e)are first order differen-

tial equations, and the obvious conditions on P and Gare that they 

approach zero as ~~. At the outer edge the equations for P and G will 

be evaluated from the difference equations. 

Based on these conditions the above equations will be written in 

finite difference fonn and evaluated at the centerline. Hence at the 
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centerline of the jet (~=O) the system of equations (3.44) becomes: 

2 
2(e L) fll + f2 = 0 

II E 
e 2 

(i+l)(~rK) k" + (i+1) Kf - E = 0 
ok 

e 2 2 
(i+l}(..l!..!L)E" + (i+1)(5-1) Ef - C 2' L = 0 

o€ E 2 € K 

P(O) :: 0 

G(O) :: 0 

Recall that i=O corresponds to the plane jet while i=1 for the 

axisymmetric case. 

3.6 Quasi-Linearization 

(3.45a) 

(3.45b) 

(3.45c) 

(3.45d) 

(3.45e) 

An analytical solution of the system (3.44) has not been obtained, and 

the best that can be done for now is to obtain a numerical one. For most 

practical purposes of engineering interest, a numerical solution will pro-

vide the required information with a fair degree of accuracy. However, 

numerical instabilities which arise mainly from the non-linearity of the 

differential equations are of major concern since they can prevent any 

reasonable solution of the system. Also the above system of equations 

are strongly coupled and this may contribute to instability. To overcome 

these difficulties the equations will be linearized, and then iterations 

will be carried out on this linearized set. 

In order to do this let us consider the case of a two-dimensional jet 

(i.e. ,i=O); the treatment of the axisymmetric case will be quite similar 

to the two dimensional case. For the two-dimensional case we let ;=0 in 

(3.44) to get: 
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(Of') '+ t<Gf' + f2) = 0 (3.46a) 

(~K')' + ~GK' + 2Kf) + Of'2 - E = 0 oK 2 (3.46b) 

(3.46c) 

P' .. ~ = 0 (3.46d) 

G' .. f = 0 (3.46e) 

where 

(3.47) 

The non-linear terms will be expanded in a Taylor series about some 
, 

known values and only the first order quantities will be retained. For 

example, let us consider the last terms in the momentum equation (3.46a). 

They will be linearized as follows: 

f2 = f2 + 2f (f-f) 
000 

Gf' = G f' + G (f'-f') + f' (G-G) 000 0 0 0 

(3.48a) 

(3.48b) 

Where the quantities with the "0" subscript are assumed to be a constant 

and in this case they are known from previous iterations. Hence the 

equations (3.46) can be written in the following linearized form: 

G f' 
(Of' )' +...Q.. f' + f f + ...Q.. G = 1 (f2 + Gf') . 2 022 0 (3.49a) 

G 
(.Q... k') + ....2. K' + f K + K f + K' G. + (20f') f' - E uk 2 0 0 0 0 

= l- (2Kf + GK') + (Of'2) 
" 0 0 

(3.49b) 
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(!L..E')' + Go E' + (Sf _ C Ce:2K) E + (2C C Kf') f'~· ae: 2 2 ~ 0 a ~ e:1 a 

5E ICC E E ' 
+ 20 f + (C C f 2 - e:2 V ) K + __ 0 __ G = 1 (SEf + GEl) 

~ e:1 0 a 2 2 a 

+ C(C 1 fl2K - Ce:2 EK) 
~ e: 0 a (3.49c) 

pi .. 2f f =_f2 
a a (3.49d) 

G1 
.. f = a (3.4ge) 

3.7 The "finite" Difference Eguations 

Using a control differencing scheme (see Figure 3.2), which is of a 

second order accuracy, the differential equations (3.49) can be expressed 

in finite difference fonn.- After some algebraic rearrangement of the 

various terms the following difference equations results: 

o. 1+0. G. 40. 0.+1+0. G. 
[ J-2 J - t-] F. 1 + [f. -~] f. + [J 2 J + t-] f ·+1 

2~; ~; a J- J 2~~ 0 J 2~~ ~~ J 

f.' 2. 
+ (---21

) G. = (f. + G.f~) o J J J J a 

.s. 1 12 + (2) G ... E. = ~2 2K.f. + G.K.] + (O.f. ) o J J J J J J a J J 0 

O. 1+0. G. 1 [J- J _ -1._] 
2ae:~;2 2 2~~ a Ej _1 

0'+1+0. G· 1 [ J J ....l._] E + 2 + 2 2~~ a j+l 
2ae:~~ 

(3.S0a) 

(3.50b) 



www.manaraa.com

49 

5 C C If~K. 
+ 2" (Ej ) 0 f j + ( ).! ~~.J J) 0 f j+ 1 .. 

'2 e e 2E. 5 
+ [e elf. - ~ e J] K. + - (E.) G. 

~ e J OJ 0 J2 . J 0 J 

1 . '2 EiKo 
:It ~ (5Ej fJ. + GJ. E '. ) + 2C 1 C (f. K.) - C e 2 (-0 ) 

~ JOe ~ J J 0 ~ e j 0 
(3.50c) 

(3.50d) 

Gj _l G. 1 
--.J.+-f + f. = 0 (3.50e) d~ d~ 2 j-l J 

The preceeding system of difference equations (3.50) can be written 

in the following matrix form: 

~11 0 0 0 0 F. 1 bTl 0 0 0 b1 F. J- J 
a2l a22 0 0 0 K. 1 b21 b22 b23 0 b 25 K. J- J 

a31 0 a33 . 0 0 E. 1 b31 b32 b33 0 b35 E. 
J' + J 

a41 0 0 a44 0 P j-l b41 0 0 b44 0 P. 
J 

. aSl 0 0 0 aS5 G
j

_1 bS1 0 0 0 bSS Gj 

ell 0 0 0 0 Fj +1 d, 

e21 C22 0 0 0 Kj +l d2 (3.51 ) 
+ C31 0 C33 0 0 Ej +l d3 = 

.' , 
0 0 0 0 0 Pj +1 d4 
0 0 0 0 0 G. '1 JT 0 
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where the a's, bls and CiS are the coefficients in the difference equa-

tions (3.50) and the d's are on the right hand side of the equations. At 

the inner boundary (~=O) the system of equations in (3.5)) will be replaced 

by the boundary conditions (3.45).- At the outer edge the functions F, K and 

E go. to zero,_ and_~ and P will be e~~luated usi_ng equations (3.50d and e) .. 

3.8 Similarity Solution 

The system of equations (3.51) is of the same form that is given by 

equation (2) in Appendix F. Unlike the conventional numerical method, the 

. numerical scheme which has been introduced in Appendix F solves for the un-

knowns at each grid point simultaneously. This method eliminates some of 

the errors arising from the coupling of the equations of motion. 

To start the numerical solution we have to guess some suitable profiles. 

From this first guess the coefficients in the difference equations and the 

source terms will be evaluated. Then using the scheme mentioned above 

(Appendix F) a new profile will be calculated. With the new profiles, the 

coefficients and source terms will be updated and another iteration will 

take place. This procedure will be repeated until the differences between 

successive solutions reach a certain fixed tolerance, signifying convergence 

to the desired solution. 

The initial profiles are obtained from the eddy viscosity solution 

which is given in Appendix B. The mean velocity profiles are given by the 

exact expressions (B-14) and(B-26). The parameter C in these equations is 

selected based on experimental data. The kinetic energy of turbulence and 

the dissipation rate will be estimated based on the-observed values of K 

E and uv (See Appendi xC) . 

Several attempts have been made to predict the flow field of the plane 

and round jets using the initial profiles described above,but we could not 
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find a reasonable solution with the set of constants that had been orig-

inally proposed by Jones and Launder (1972) and given in Table 3.1. It has 

been observed (present study) that the k-E model was not so sensitive to 

the constant in the diffusion term as it was for the constant in the prod-

uction/destruction terms in the E equation. This behavior has been found 

not only in the axisymmetric jet but also in the plane jet as well. 

The constants associated with the k-E model appear not to be universal since 

they differ from one flow to the other. In particular, a set of constants 

that workSwell in ~lane free shear flows will not do as well in the axi, 

symmetric case. Over the last decay several analyses have been made to 

establish a set of model constants that agree well with experimental data. 

For example, Launder et ale (1973) have done extensive studies of turbulent 

free shear flows and reevaluated the model constants (see Table 3.2). 

Hoffman (1975) examined the constants in the diffusion terms of the k-

and e- equations for channel flows. Pope (1978) analyzed the plane and 

round jet,and he added an extra term in the dissipation equation for the 

round jet case to account for the vortex stretching effect. 
I 

Hassid (1979) solved the k-e model for momentumless wakes and suggested 

another set of constants. Hanjalic and Launder (1980) proposed a modified 

dissipation equation and added the Second order terms to the production in 

the k- and-e- equations. They predicted the plane and axisymmetric turbul-

ent jets with their improved model and concluded that further improvement 

of the model will widen its application to a large range of shear flows. 

Table (3.2) shows a comparison of tAe recently proposed model constants for 

the k-e model. 



www.manaraa.com

52 

Reference Flow C Cd C€2 O'k II 

Jones and Boundary 
Launder (1972) layer .09 1. 55 2.0 1.0 

Launder et a1. Free shear 
(1973) flows .09 1.44 1.92 1.0 

Hoffman (1973) Channel 
flow .09 ~ 1.81 2.0 2.0 

Pope (1978) Plane jet & 
round jet .09 1.45 1.90 1.0 

Hassid (1979) Momentumless 
wake .1667 1.44 1.92 1.0 

Hanja1ic and Free Shear 
Launder (1980) Flows .09 1.44 1.90 1.0 

Plane jet .09 1.45 2.0 1.0 
Present study 

Round jet .09 1.5.5 2.0 1.0 

Table 3.2 A Comparison of the Proposed Model Constants in the 
k-€ model. 
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3.9 Proposed Model Constant 

At the outer edge of the free shear flows such as the turbulent jets 

and wakes one may expect that the diffusion in the k- and e- equations is 

balanced by the convection and that the dissipation is identically balanced by 

the production. Hence if we evaluate equations (3.16) and (3.17) near the 

outer edge of the flow we have: 

i k' ". k . C k2 k Y ~ + Y 1 ~ = L (y 1 -l!.. _ L) ax ay ay ak e ay (3.52a) 

(3.52b) 

·Further,at the outer edge (~),the lateral component of the mean velocity 

V approaches a constant value so that: 

'" V = canst 

V » U 

and 

o 0 -» -oy ax 

Hence the equations (3.52) can be written as: 

i "C k2 k L (y Vk) = L (y 1 -l!.. _ L) ay ay ~ e ay 

"1" "C k2 ~ tv (y Ve) = ~y (y 1 
all e- #") 

e 

Integration with respect to y leads to~ 

C k2 ae .....H. - - - eV = 0 ae e ay 

(3.53a) 

(3.53b) 

(3.53c) 

(3.54a) 

(3.54b) 

(3.55a) 

(3.55b) 
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where it can be shown that the integration constants are zero in this case. 

Dividing equation (3.55a) by k, equation (3.55b) bye:, and subtracting 

yields: 

, Direct. i~t~.!,ationgives.: 

a /ak.. 
k = const e: -------

(3.56) 

(3.57) 

Now from equation (3.57 and the vi s!cosity hypothesi s (3.14) we must have: 

a =2.a e: k (3.58) 

In the present study we have found that unless ae: = 2. ak the eddy viscosity 

(k2/e:) will not take asymptotic value at the outer edge of the flow but in-

creases instead. Therefore if we chose ak = 1.0 then ae:= 2..0. The best fit 

constants for the similarity solution are included in Table 3.2. 

3.10 Results and Discussion of the, k-e: Model 

Several computer runs were made for different values of the model 

constants presented in Table 3.2.. The results were analyzed and compared 

with the best available experimental data. 

The constant ak in the diffusion term of the k-equation is, in fact, 

arbitrary and the choice of ak = 1.0 seems to be the simplest choice. How-

ever, this fixes a (Section 3-9) alnd transfers any adjustment of the dif-e: 
fusion coefficients to C. On the other hand, C 2 was evaluated from the u e: 
data of decaying isotropic turbulence (Section 2.6) where the value Ce:2 = 2 

was the i$YMPtotic value of Ce:2 for a large turbulent Reynolds number. In 

other words we may say that C = .09 and C 1 = 1.45 or C 1 = 1.55 are ob-u e: e: 
tained by computer optimization for fixed values of ak' ae: and Ce:2. 

Changing C by a few percent will not effect the overall result as much as u 
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it did when the change was made in CE1 . For example, for Cel = 1.45 an 

excellent agreement with the data was achieved in the plane jet; for 

the same value of CEl,the velocity profile for the round jet was too narrow 

(i.e., ~ ~ .064 instead of ~! = .086 - .09). The choice of Ce2 = 1.55 

in the axisymmetric jet led however to a better .result. 

In previous theoretical work (eg~. Taulbee and Lumley 1980).\the' decay 
of the centerline mean velocity and the spreading rate have been given 

great attention. The importance of these particular quantities - spreading 

rate and the decay rate of mean vel~city ... will become apparent when we 

discuss the momentum conservation in a later chapter. Unlike the routines 

of Taulbee and Lumley (1980) and others who integrated downstream until 

self-preservation was reached, the similarity solution presented here was 

obtained for the self-preservation region. Hence the spreading rate para-

mete .. in the integration routine will be equivalent to the width parameter 

of the mean velocity profile in the similarity solution. 

A convenient measure for the spreading rate which is widely used in 

the literature is ~t where the length scale t is defined as the non-

dimensional lateral distance at which the axial mean velocity is a half of 

its maximum. The constant C in the'decay of the centerline mean velocity 

w11Tbe calculated from the momentum integral (equation (2.43»; that is, 

(3.52) 

where Q is the fraction of turbulent contribution to the momentum transport 
and is given by: 

I 92+g3· 
Q = (91 - 2 ) ;ld~ (3.53) 

o 
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This turbulent contribution to the momentum integral will be neglected 

in the k-e: model because the model does not provide information about the 

normal stresses g1' 92 and 93' 

The left hand side of the equation (3.52) will be evaluated from the 

similarity solutien;· hence C can then be obtained by letting i=O for the 

plane jet or i=l for the round jet. 

To display the quality of the agreement, the result obtained with the 

best-fit constants are presented together with the best available experimental 

data. For the axisymmetric jet the most comprehensive measurements are those 

of Wygnanski and Fiedler (1969). The more recent measurements for the round 

jet using a new method are those of Abbiss et al.(1975) and Rodi (1975). For 

the plane jet the comparisons of the results are made with reference to the 

experimental works of Bradbury (1965), Hekestad (1965), and Gutmark and 

Wygnanski (1975). 

For meaningful comparisons, of course, it is very important that the 

measurements should have been performed at a cross section downstream where 

similarity prevails for both mean and fluctuating quantities. This require-

ment was not quite met in the case of Abbiss et al. where x/do= 30; this was 

not far enough for the fluctuating quantities to achieve a self-preserving 

state. However, it has been observed (Wygnanski and Fiedler 1969 among others) 

that the mean velocity becomes self-similar at about x/do~ 30 so we can at 

least use the Abbiss et a1. data for comparison of the calculated and meas-

ured. mean velocity profiles. 

Near the outer edge of the jets, the relative turbulence intensity is 

very high. As a consequence the measurements become increasingly unreliable 

toward the edges. Hence the discrepency between the calculated and measured 

profiles near the outer edge should not be attributed solely to the calculation. 

The calculated mean and turbulent quantities for the plane and axisymmetric 
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jet are plotted along with the measured profiles in the figures (3.3-3.14). 

The simrtlarity solution for the plane jet predicts the mean velocity and 

kinetic energy profiles fairly well, as it can be seen in Figure (3.3) and 

(3.4). The shear stress (uv/U;) has been calculated using the eddy viscosity 

hypothesis (3.14) and (3.15). The result f.or the plane jet is shown in 

Figure (3.5) which displays good agreement with the data. 

Figure (3.6) shows the energy budget across the jet, and it can be seen 

the terms in the energy equation are well balanced across the entire flow 

field. There are no accurate measurements available for the terms in the 

dissipation rate equation; however, from the calculated results, Figure (3.7) 

shows that· the e-equation ;s fairly balanced. From Figure (3.8) it can be 

seen that the calculated eddy viscosity (v t '" k2/e:) is constant over most of 

the cross-section, and more importantly the ratio k2/e: is well behaved at 

the outer edge of flow as both k and e: + 0 when ~ + ~. 

For the round jet, Figures (3.9) and (3.10) show that the predicted mean 

velocity and, in turn, the shear stress display fairly good agreement with 

the data. The shear stress for the round jet was obtained in a similar way 

as that for the plane jet. The kinetic energy profile as shown in Figure (3.11) 

agrees with the data for ~ > .06, but it is off by nearly 18% near the axis 

(t=O). The reason for the energy loss near the axis of symmetry is due to the 

high dissipation rate "e ll as it can be seen in the energy balance figure (3.12). 

Figure (3.12) shows, however, that the kinetic energy equation is well in 

balance for ~ > .06. 

The main errors in the prediction of the axisymmetric profiles are attri-

buted to the dissipation rate transport equation. From the balance of e-

equation (Figure 3.18) we can see that the equation is not nearly in balance 

near the axis, and that the destruction term (Ce2e2/k) is too high near the 
. , aU 

center 1 i ne and too low at the outer edge. The production term (C e:l v t 3Y) 
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seems to be too low to account for the destruction term near the centerline. 

However,. the production/destruction terms approach the same order of magni-

tude for ~ !. .065. 

Nothing much can be said about the diffusion term because there is not 

enough infonnation about the diffusion of e; and as stated earlier, changing 

the constant e in the diffusion will not change the final result because of 
\l 

the change in the constants for the production/destruction terms, eel and ee2. 

The kinetic energy profile calculated by Hanjalic and Launder (1980) 

resulting from their improved k-e model also shows a loss of roughly 20% of 

the energy near the axis in the axisymmetric jet. However, they did not 

show any energy balance for either the plane nor the axisymmetric jet. 

Figure (3.14) shows the eddy viscosity ('.It'" k2/e) for the round jet 

across the flow. The shape of k2/~ seems to be unaffected by the energy loss 

near the center line and it is also behaving very nicely as ; +~. However, 

unlike the two-dimensional case the ratio k2/e decreases very slowly as 

increases at the edge of the jet. 

Table (3.3) shows a comparison with the data of the spreading rate and 

the centerline mean velocity decay rate for both plane and axisymmetric jets. 

The spreading rate for both cases displays good agreement with the data. The 

values of the constant e seem to be overestimated as compared with the measured 

values in both cases, i.e., the plane and round jet. This over-estimate, 

however, is not an error in the calculation and it is only due to neglecting 

the contribution of the turbulence to the momentum transport. However, we will 

hold off further discussion of the constant e and the momentum conservation 

. until we predict the jet flows using the Reynolds stress closure which solves 

directly for all the non-zero components at the Reynolds stress. 



www.manaraa.com

59 

3.11 Concluding Remarks 

From the foregoing results we: may conclude that the k-e model with 

the present set of constants (Section 3.7) has predicted the behavior of the 

turbulent plane jet in the simi 1 ar:ity region wi thin the experimental accuracy. 

The same can not be said, however" about the result of the axisymmetric jet, 

since the solution did not converge properly as it did for the plane case. 

The result presented here for the round jet is the best that can be obtained 

for the set of constants given in Table 3.2. 

The lack of universality of the model constants and the error in the 

energy profiles support the thesis of section (2.6) and {2.7} that Cel and 

Ce2 might not be constants. In order for eel and ee2 to be universal they 

must predict the flow for both cases, plane and round jet. So far there have 

been no reliable measurements of the tenns in the e-transport equation, thus 

proper choices of the functional dependence of eel and ee2 is difficult at 

the present time. The overall results obtained with the k-e model are indeed 

encouragement to further improve the model. 
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Reference dt C x/D 
dx 

Present study, 
k-e similarity .1106 2.462 
solution 

Bradbury (1965) .109 2.4 14-70 
~ cv .., 
cv s:: 
IG -"- Heskestad .11 47-155 

Gutmark and .102 2.306 10-150 Wygnanski (1976) 

Present study, 
k-e similarity .087 6.4 
solution 

Wygnanski and 
~ 

Fiedler (l969) .086 5.0* 20-98 
Q) .., 
-0 s:: 
:I 
~ Rod; (1975) .086 6.0 20-75 

-Abbiss et a1. .089-.1 5.5 20-30 

Table 3.3 Spreading and Decay Rate Constants for Plane and 
Axisymmetric Jet. 

*The values of C have been obtained from the graphs which 
are given by the authors. 

-
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Figure 3.3 Mean Velocity Profile in Plane Jet 
(---) Similarity solution 
(0) Gutmark and Wygnanski (1976) 
(~) Bradbury (1965) 

(---) Heskastad(1965) 
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Figure 3.4 Turbulence Kinetic Energy in Plane Jet. 
Notations as in Figure 3.2. 
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Ffgure 3.5 Shear Stress Distri~ution in Plane Jet. 

Notations as in Figuire 3.2. 
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Figure 3.6 Calculated Turbulence Energy Balance Across the 
Flow in Plane Jet where: 

--L x-x o 
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C = convection, 0 = diffusion, P = production, OS = dissipation 
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Figure 3.7 Calculated Dissipation Rate lie:" Balance Across Self-Preserving 
Plane Jet where: 
C = convection, 0 = diffusion, P = production, OS - Destruction 

of e. 
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Figure 3.8 Calculated Turbulence "eddy viscosity" Across the Flow 
in Plane Jet (vt = C k2/~)~ 
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Figure 3.9 Mean Velocity Profile in Axisymmetric Self-preserving 
Turbulent Jet 
(-) Similarity Solution (k-€ model) 
(_._) Abbiss et al. (Pulsed wire) (1975) 
(---) Wygnanski& Fiedler (1969). 
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Figure 3.10 Turbulent Shear Stress Across Axisymmetric 
Self-preserving Jet. 

(---) Similarity Solution (k-e model) 
(0) Wygnanski and Fiedler (1969) 
(a) Rodi (1975) 
(x) Abbiss et al. (Pulsed wire) (1975) 
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Figure 3.11 Turbulence Kinetic Energy Profile in Self-preserving 
Axisymmetric Turbwlent Jet. 
(---) Similarity Solution (k-e model) 
(0) Wygnanski and Fiedler (1969). 
(x) Rodi (1975}. 
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Figure 3.12 Calculated Kinetic Energy Balance Across Self-preserving 
Axisymmetric Turbulent Jet, where: 

.3 

C = convection, D = diffusion, P = production, DS = dissipation 
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Figure 3.13 Dissipation Rate "e" Balance Across Self-preserving 
Axisymmetric Jet, where: 
C = convection, 0 = diffusion, P = production, 
OS = destruction of €. 

.3 



www.manaraa.com

·003 

.992 

.001 

0.0 

72 

o • 1 .2 
r -x-x o 

Figure 3.14 Calculated Turbulent "eddy viscosityll Across 
Self-preserving Axisymmetric Jet. 
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CHAPTER 4 

Application of the Reynolds Stress Model 

4.1 Introduction 

In Chapter 3, the plane and round turbulent free jets have been predicted 

using the k-& model closure. As discussed earlier,· a single set of constants 

could not produce good results for both the plane and axisymmetric jets. 

Further, the kinetic energy in the round jet was 18% lower than the data. 

Our primary aim here is to reexamine the plane and round jet flows using the 

Reynolds stress model and compare the results with available experimental data. 

Here, unlike in the k-& model, the parameter in the destruction term of 

c-equation ('0) which dictates the rate of the kinetic energy decay is a 

function of the state of turbulence. Hence with wl = constant, $0 will be 

adjusted as a function of the turbulence Reynolds number and the first in-

variant of the anisotropy tensor. Also the diffusion terms in the Reynolds-

stress model are controlled by the parameter C1 which will be part of the 

calculation as a function of Re, II and III. It is expected that the para-

meters C, and wl with the fixed constants $1 and c are more likely to be 

universal than the pure constants in the k-e model. 

The equations of motion for the mean flow are given by equations (2.1) 

and (2.2) and they are discussed in Appendix A for both plane and axisym-

metric jet. The stress equations are obtained from equation (2.67). In 

Appendix 0 the Reynolds stress equations for each stress component have been 

written in a cartesian coordinate system (plane jet). In Appendix E~ the 

equations for the Reynolds stress (2.67) has been transformed to curvilinear 

form and the equations for the axisymmetric case have been written for x, 

r and a components. In Section (4.2) the equations for the stress compon-

ents and the dissipation rate have been arranged for a general free shear 

flow, so that the extra terms arising in this axisymmetric case can be 
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CHAPTER 4 

Application of the Reynolds Stress Model 

4.1 Introduction 

In Chapter 3, the plane and round turbulent free jets have been predicted 

using the k-& model closure. As discussed earlier,· a single set of constants 

could not produce good results for both the plane and axisymmetric jets. 

Further, the kinetic energy in the round jet was 18% lower than the data. 

Our primary aim here is to reexamine the plane and round jet flows using the 

Reynolds stress model and compare the results with available experimental data. 

Here, unlike in the k-& model, the parameter in the destruction term of 

c-equation ('0) which dictates the rate of the kinetic energy decay is a 

function of the state of turbulence. Hence with wl = constant, $0 will be 

adjusted as a function of the turbulence Reynolds number and the first in-

variant of the anisotropy tensor. Also the diffusion terms in the Reynolds-

stress model are controlled by the parameter C1 which will be part of the 

calculation as a function of Re, II and III. It is expected that the para-

meters C, and wl with the fixed constants $1 and c are more likely to be 

universal than the pure constants in the k-e model. 

The equations of motion for the mean flow are given by equations (2.1) 

and (2.2) and they are discussed in Appendix A for both plane and axisym-

metric jet. The stress equations are obtained from equation (2.67). In 

Appendix 0 the Reynolds stress equations for each stress component have been 

written in a cartesian coordinate system (plane jet). In Appendix E~ the 

equations for the Reynolds stress (2.67) has been transformed to curvilinear 

form and the equations for the axisymmetric case have been written for x, 

r and a components. In Section (4.2) the equations for the stress compon-

ents and the dissipation rate have been arranged for a general free shear 

flow, so that the extra terms arising in this axisymmetric case can be 
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eliminated and the problem becomes two-dimensional. The equations for 

the mean and turbulence qualities are then solved simultaneously for the 

self-preserving jet. The centerl ine va lues of the'stress components and the 

dissipation have been ~pdated after ,each iteration. The final solutions 

are compared with the existing experimental data. 

4.2 The Reynolds Stress Equations 

The governing equations for the kinematic Reynolds stresses for an 

incompressible and isothermal turbulent flow are given in Appendix 0 for 

the plane jet and in Appendix E fot the axisymmetric case. After some 

rearrangement the equations become: 

l-Egy.ation 

z z -' -2 -2 -2" 
U ~ + V !!L = .L [C n2 {( C +l) v.z !!L + 3C v2 ll.- + C v2 aw ax ay ay 0 ~ 2 ay 2 ay 2 ay 

£ 

2" -2 ·-2 
+ 2(C +1) uv 2.!r!.}1 + i C ~C v2.!!L + 3(C +1) v2 1L 2 ay ~ y 0 £. 2 ay 2 ay 

- 2 -- -
( ) 2 aw -- auv £ 2 1 ( 2) • C2-2;, v· ay + 2CZ uv ay } - C1 q2 u + 3' c1- £ 

2 -- aU "2 1 ) 2] au + !<4C-l) uv ay + [-2u + 4(15 - cbll q ax 
---------_ ....... _--

------------- --------------

(4. 1 ) 
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7- Equation 

'"2""2 2 -2 -2 
u l'L + V l'L = 1... [C .9.:. {(c ~ ) v2 lL + 3(C +1) v2 l'L ay ay ay 0 E 2 3 ay 2 5 ay 

- 2 -.2 -2 
+ (C ..£.) v2 2!... + 2(C - -£) Uv auv}] + 1. C B..:.. {C v2. 2lL . 2 5 ay 2 5 ay y 0 E 2 ay 

"2 - 2 -
+ 3(C +1) -; !L + (C -2) v2 'Ow + 2C uv auv} - C L v2 

2 ay 2 ay 2 ay , qz 
, ( ) 4 ( - aU (1 )]2 aU -+"3 C,-2 e -"3 1+5C) uv ay + 4 - 30 + c(b l1 +b22 q ax 

"'" '-4,2 b)":.2 2"2., aV -'" 4" 1 + (b +b )'":.2 v 
: L' \ 30 - c 22 q - v J ay - L - 30 c 22. 33 .. q y i 

]- Equation-

'2 ~ 2 -;rr'2 -2 -;rr 2 
U 'ow + V .2!.... = L [C .9.:. {C v'- l!L + 3C v2 2.L + (C +1) v'- ~ - ax ay ay 0 e 2 ay 2 ay 2 ay 

- . 2 -2 -2 
+ 2c- uv 1!:t'!.}] + 1. C B..:.. {(C ~) v2 ~ + 3(C _£)_v2lL 

-l ay y 0 € 2 5 ay 2 5 ay 

( 13) 2 a;t 2) - auv €"2 1 ( ) + C2T v ay + 2(C2'"5 uv aT} - C';2 W +"3 C,-2. e 

- au 1 2 aU 1 ( )]2 aV + 4 c uv ay + 4[- 30 + c(b'1+b33 )] q ax + 4[- 30 + c b22+b33 q- ay 
---,----------- -------------

(4.3) 
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uv- Equation 

_ C .L Uv + [_ 7+50c ~ + 20c-2 y2 + 2+20c w2] .2Y. , qz , 5 15 10 ay 

2 -
- (1+2c) uv !!! - (l+2c) uv 2! + 4c uv Y.. i - 1 L f.s C 9.:. iN w2 

ax ay y y ay 0 e 

i 2 8 -2 - ~ c 9.:. (-) Uy w 
y' 0 € 5 

€ - Eguation 
-z -2 

U ae + ae _ a [ 9 ~ (2 y2 ~ ae] 
ax ay - ay 5{4C,+9b+l0) e y + 2 qz ) ay 

- -2 
i 9 i 2" y2 +~2) ae 

+ y {S{4C1+9b)+10 € (y + 2 qz ay} 

where 

o For the plane jet 
i = 

1.0 For the round jet 

C = 2 
.0 3C,(2-b) 

2(C,-2) 
C = ~--..;~-
2 20+C,(8-9b) 

(4.4) 

.(4.S) 

(4.6) 

(4.7) 

(4.8) 
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The above equations have been arranged so that they can be easily 

applied to either the plane or the axisymmetric jet. Also the diffusion 

terms are arranged so that the terms that are of the gradient type will be 

treated implicitly in the numerical procedure, while the rest of the terms 

including the production and rapid terms will be treated as source terms. 

The underlined terms in the production and pressure strain part are second 

order terms based on the order of magnitude analysis of Appendix D. However, 

these terms might be of importance, in particular near the axis of symmetry 

where the leading terms in the production and pressure group vanish; hence 

these terms and also the second order terms -in the mean momentum equations are 

retained .. 
----------------------__ 0 

4.3 Boundary Conditions 

a) Outer Boundary 

At the outer boundary all turbulence quantities and their derivatives 

(realizability condition) should vanish. The axial mean velocity also van· 

ishes at the edge of the flow; the lateral component of the mean velocity 

will be determined from continuity equation at y = y (~). 
b) Inner Boundary 

The values of uiuj and e at the centerline of the jet are not known. 

The only source of information we have is that the flow considered is 

symmetric and hence we require that: 

U(o) = Um 
V{O) = 0 

uv{o) = 0 
"2 

!!L{o) = 0 (4.9) 'Oy 

"2 
~o) = 'Oy o 

"2 
~(o) = 'Oy o 

1£(0) = ay o 
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and also for the axisymmetric case we have 

(4.10) 

Equations (4.9) could be used directly as boundary conditions in the numerical 

scheme, however, to maintain the control difference accuracy the continuity 

and momentum equation will be evaluated at the centerline incorporating the 

above conditions. The resulting set of equations will be solved simultan-

eously for ~(o), ~(o), ~(o) and €(o) along with the difference equations 

evaluated at the other grid pOints. This will be discussed later when the 

equations of motion are transformed to similarity variables. 

4.4 Similarity Solution 

The similarity analY$is has been discussed in Section (3.5). Now let us 

define the nonnalized kinetic energy of th~turbulence and the dissipation by: 

3 
€ = Um g 5 (n ) /9- (4.11) 

- 2 q2 = Um g6(n) 
(4.12) 

where Tl = y/t (x) and ~ :::: Ialn which ;s used ;n the similarity equations. 

If we substitute equations (3.18) - (3.20), (4.11) and (4.12) into the 
equations for r.tean und turbulent quantities \'Ie obtain the folim"rfng set: 

Continuity: 

; + 1 f + ~f I - 4< e; i h) I = 0 
2 ~1 

(4.13) 

Momentum: 

Reynolds Stresses: 

I I + [~9. + (t"f-h) ] I [() 95] (~n9n) ~' mn ... °mn 9n + i+l f - C, 96 0mn 9n 

(4.15) 
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* where 

a m f n n = 1,2,3,4 
cS = mn 1.0 m = n m = 1,2,3,4 

and wier.e . 

(C2+l)92 3C292 C292 2(C2+1)94 

2 (C2 - S}92 3(C2+!)92 
2 (C25)92 2(C2+' )94 

~ :I (Co96) (4.16) 
95 C292 3C292 (C2+1)92 2C294 

3 
594 

4 
594 

1 
- 594 

8 
~2 

C292 3(C2+1)92 (C2-2)92 2C294 

C 9 
C292 3(C2+1)92 (2-2)92 2C29~ 

R. :I (...Q..i) (4. 17) mn . 95 2 2 13 2 
(~-S)92 3(C25)92 (C2+s)92 2(C25)94 

a 94 -9 4 292 

1 -j{C,-2) 

1 t< C,-2) 
A = m (4. TS} 

1 !,<C,-2) 

a 

* Repeated subscripts imply summation. 
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2 - 3" (4C-l)94 

+ 4 (1+5C)94 

~ = - 4C94 

_ 7+50Cg + 20C-2 + 2+20C 
15' 15 92 10 93 

1 -29, + 4(TS;cb,,)96 

1 4[- 30 + c(b,,+b22 )]96 
+ , 

4(- 30 + c(b,,+b33)]96 

- (1+2C)94 . 
1 4[- 30+ c(b11 + b33 )]96 

4[is - cb22]96 - 292 
I 

h -
1 4[- 30 + c(b22+b33 )]96 

. 
- (1+2c)94 

CoC2 29'5 96(92-93)93 

Co96 2 
i d 

2""9 (C2- 5) (92-93)93 5 
- i"CTf co96 

29 (c2+, )(92-93)93 5 
. 2 Co96 
- 3"9""9493 5 

I 

f 

4(- 10 + c(b11 +b33 )]96 

1 4[- 30 + c(b22+b33 )]96 

-293 + 4(~5 - cb33 )96 

- 4c94 

o 

16 - - (g -g3)9 523 

h . 
- 1 
~ 

(4.19) . 
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Dissipation "Rate" Equation: 

(4.20) 

where 
. 9 g2+g2 

k = i -' 9 ( 6) [g + 2 2 4] 55 55 - 5(4C,+9b+l0) g5 2 g6 (4.21) 

d5 = '19S[b12f' - i~l(f+~f') + b22h' + b33 ~ i (4.22) 

Centerline Values of the Reynolds Stress 

By transformin9 the boundary condition (4.9) to similarity variables 

we obtain~ 

f(a) = 
f'(O) = 
h(O) = 
9,(0) = 

g2(0) = 

g3(0) = 
g4 (0) = 

g5(O} = 

1 

0 

0 

0 

0 

0 

0 

0 

(4.23a) 

(4.23b) 

(4.23c) 

(4.24a) 

(4.24b) 

(4.24c) 

(4.25a) 

{4.25b} 

When the continuity and momentum equations (4.13) and (4.14) are evaluated 

in the limit ;~~ we get 

hi (0) 1 = 2" (4.26a) 

(4.26b) 

Now let us evaluate the Reynolds stress equation at centerline. By 

substituting' the above condition in equatio!1 (4.15) we get: 
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~ g~ + [kmn + I; l-i tmn]9~ + [( i+1) - s !:] ~m~ 9n + Am 95 = dm 

(4.27) 

For the shear stress component 94 (m=4 in the above equation) all that 

is left is: 
(4.28) 

On the other hand, for the normal stresses 91' 92 and 93 (m=1,2,3, and n=1,2,3,), 

equation (4.27) becomes: 

[kmn + ~l-i 1mn] g~ + [(i+1) - C1 :5] 0mn 9n + Am 95 = dm 
6 

The coefficients kmn' 1mn and Am and the source terms dm will be 

(4.29) 

evaluated from (4.16-4.19) by letting ~-+O. The dissipation equation when 

evaluated at ~=o takes the form: 

[k + ~ 1- i R. l 9 II + [3 i +5 _ 1jI 95] g = d ( 4. 30 ) 
55 55 5 2 0 96 5 5 

where k55' 155 and d5 are obtained from equations (4.21) and (4.22). Hence 

equations (3.29) and (3.30) provide four equations which can be solved 

simultaneously to obtain the centerline values of the normal stresses 91' 92' 

and· 93 t~gether with the dissipation rate of the turbulence kinetic ener9Y 95· 
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4.S Model IS Parameters 

The kinetic energy decay rate function Wo and the return to isotropy 

parameters are given by equation (2.27) and (2.46) which can be rewritten 

as: 

Wo = ~+ .98[l-1n(1-SS11)] exp (-2.83 RR.-· S) (4.31) 

C1 = 2.0 + (~ + 3 III + 11)[72 RR.-· S 

+ 80.1n(1+ 62.4 II + 2.3 III )] exp (- 7.77 R~-·5) (4.32) 

The turbulence Reynolds number R
t 

is defined by equation (2.l7). It 

can be written in terms of the similarity variables as follows: 
U ~ 2 

R =...!!L (g6 ) ( 4. 32 ) R, 'J 9gs 

If we substitute for the centerline mean velocity Urn and the turbulence 

length scale R, their respective similarity definitions (3.26 and 3.42), 

equation (4.32) becomes: 

(4.33) 

or 

(4.34) 

where Re is the jet exit Reynolds number. 

As we can see from the proceeding equation, the turbulence Reynolds number 

will depend on the jet exit Reynolds number for both the plane and round 

jets. Furthermore, RR, will be a function of x in the two-dimensional flow 

case. Hence Wo and Cl will be functions of the downstream position. This 

of course·, contradicts the similarity formulation which assumes that all 
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variables in question will be functions of the similarity variable n only. 

It turns out, however, in the jet calculation, that ~o and Cl dependence on 

the R
t 

is rather weak. It has been observed in the present calculation 

that changing the turbulence Reynolds number by 50% only changes the final 

turbulence profiles by 1-2% with hardly any change in the mean velocity 

prof; 1 es. 

For the present calculations we let 
g2 

R • RET (...§.) 
t g5 

(4.35) 

and RET is kept constant for either case plane or round. For the round jet, 

x disappears from the above equation, while in the plane jet we simply 

choose an average value for i- from the experimental data (see Table 4.1). 
o 

The remaining ~arameters of this model are 1/11 which appears in the 

production term of €-equation, c in the rapid terms and finally b, the 

relaxation parameter in the diffusion terms. These, however, will be taken 

constant in the current calculation, and assigned the values that are given 

in Table 4.1. 
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Uodo 
Flow x/d C a, R=- tP1 b a ~ v c 

Round Jet - 6.0 .09 87000 2.0 -.15 0 

Plane Jet 100 2.4 .11 24000 2.0 - .15 0 

Table 4.1 Reynolds Stress Model Constants 

The jet exit Reynolds number was based on Rod; (1975) experiment for 

the round jet, and on Heskestad (1965) for the plane jet. The constant in 

the centerline decay law C and the jet growth rate al are assigned the 

values shown in Table (4.1) which are average values of the observed data. 

4.6 Numerical Solution 

The system of equations (4.13), (4.14), (4.15) and (4.20) constitutes 

a closed set of ordinary differential equations which are sufficient to 

solve the seven unknowns, U, V, u2, ~, w2, uv and €. However, solving these 
equations is not a trivial matter, and the outcome of the solution will depend 

on how the various terms in stress and dissipation equations are treated in the 

computation. For example, in the application of the k-€ modal, the production 

tenns have been linearized, and treated implicitly in the calculation; this 

worked fairly well. On the other hand, the production and pressure strain 

terms in the stress model which include the mean velocity gradients, 

involve a lot of terms as compared to the k-€ model. Hence it seems to be 

more reasonable for the comput~tion to treat these terms explicitly and add 

them to the source terms. All the other terms that involve the gradients of 

f· the Reynolds stress components and the dissipat{on tenns wi 11 remain impl i ci t 

in the calculations. 
The system of equations cited above are quasi-linearized in a way similar 

to that used in the k-€ model solution. They can be written as; 
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(4.37a) 

(4.37b) 

(k gil' + [it-11 + (~f-h)6 ] g' .. mn n mn mn 0 n 

where the "0" subscript indicates that the quantity is fixed for that cycle 

of the iteration process and evaluated from the previous iteration. In the 

early stages of the computation the stress equation (4.37c) and the dissi-

pation equation (4.37d) were solved simultaneously for the stress components 

and the dissipation rate; then with the shear and normal stresses known, 

the momentum (4.37b) and continuity (4.37a) equations were solved for the 

mean flow velocity components U and V. It was, however, difficult to get a 

smooth mean velocity profile near the centerline. This is because that when 

the gradient of the shear stress(which is the most dominant term in the 

momentum equation) increases or decreases slightly, the resulting change in 

the mean velocity profile is noticeable. It was decided to solve the set 
-

of equations (4.37) simultaneously using the difference scheme of Appendix F. 

This method solves for the unknowns at three nodes point simultaneously, as 

previously mentioned in the k-e: model application. 

To start the computation, the eddy viscosity solution in Appendix C was 

used as an· initial guess with u2 = v2 :: w2 = 1 q2. Those profiles, however, 
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were taken for ~ ~ ~ss (see Appendix C). For; < ~ss the profiles were 

approximated so that they take values reasonably close to experimental data 

at the centerline of the jet. The model parameters Cl and $0 were initially 

assigned the values (3.25)and (3.8) respectively, and then they were updated 

using equation (4.31) and (4.32) after each iteration. 
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4.7 Results 

The calculated mean and turbulent profiles are plotted versus the 

similarity variable (~~) and are shown in the figures 4.1-4.15. The 

results are compared with the most recent data of Abbiss et a1. (1975), 

Rod; (1975) and Wygnanski and Rodi (1969) for the round case. For the 

plane jet comparisons the data of Bradbury (1965), Heskestad (1965) and 

Gutmark and Wygnanski (1976) are used. Table 4.2 summarizes the flow 

constants of turbulent free jets for both plane and axisymmetric flows. 

a) Mean Velocities 

Figure 4.1 and Figure 4.6 show: the calculated distribution of the 

. normalized axial components of the mean velocities for both plane and 

round jets while figure 4.11 displays the distribution of the normalized 

lateral component of the mean velocities across self-preserving jets. 

Not much need to be said about the shape of the mean profiles because 

their behavior is well known and they agree fairly well with the data 

within the experimental accuracy of the measured values. 

If we now take a closer look at the mean velocity profiles and test 

whether the momentum integral constraint (3.27) is satisfied or not then 

we need to bring the decay rates of the mean centerline velocity of the 

jet into the picture. (See equation B25). This is an important point 

which has been raised by Baker (1980) (see also George et al. 1981). 

For example, Figure 3 of Wygnanski and Fiedler's experiments (1969) 

gives C = 5.0 while in Rodi's latest work (1975)Figure 8 gives C = 6.0. 

an the other hand their normalized mean velocity profiles are nearly iden-

tical including the spreading rate. (see Table 4.2). Obviously if one of 

the above cited experiments satisfies conservation of momentum, the other 

will not., This point will be disclJlssed in some detail in Chapter 5. 
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Uodo -
dR. (~; )ma~ Flow Reference C R=-
dx v 

Bradbury (1965) * not 2.4 3xl04 .0242 
, constant 

Heskestad (1965) .11 - .47xl04 .021 
-3~7x104 

Gutmark & 
3x104 Plane Wygnanski (1976 ) .102 2.3Xl 6 .024 

Jet 
Present Results 

k-e model . 1106 2.46 - .022 
Reynolds stress .112 2.42 .47x104 

Wygnanski & 
105 Fiedl er (1969) .086 5.0 .0165 

Rod; (1975) .086":'.09 6.0 8.7x104 .0186 

Round Abbi ss et a 1. .89-. 1 5.5 5.75x104 .0221 
Jet Present Results 

k-e model .087 6.4 - .021 
Stress model .095 5.8 8.7x104 .0198 

Table 4.2 Flow Constants for Tu.rbulent Jet Issuing in Still Air. 

*For Bradbury's experiment Uf/Um = .16, where UE is the free stream 
velocity at the outer edge af the jet. 

x 
do 

14-70 

47-155 

120 

-
100 

20-98 

62-75 

20-30 

-
-
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~) Stress Components 

F.igures 4.2, 4.3 and 4.4 show the variation of the normal components 

of the Reynolds stress across self-preserving axisymmetric jets. The cal-

culated profiles are seen to be in fair agreement, within a few percent 

the experimental data of Wygnanski and Fiedler (1969) and Rodi (1975), 

hereafter referred to as reference I and reference II respectively. A 

little disagreement between the data of reference I and II is seen in 

lateral and a~1mutha1 components of the Reynolds stress in particular near 

the jet axis. It seems also from· figure 4.2-4.4 that either the calcul-

ated profiles are overestimated or the measured data are underestimating 

the result at the outer edge. The shear stress profile for the round jet 

is compared with the data of reference I and II and Abbiss at al. in 

figure 4.5. The Reynolds stress similarity solution gives higher value 

of the maximum shear stress as compared with I and lies between the values 

of reference II and the data of Abbiss et al. Otherwise the calculated 

shear stress for the round jet is well behaved over the entire region. 

On the other hand the normal stresses u2/U~, v2/U~, w2/u~ for the 

plane jet are in disagreement in the region for ~ < .1 as seen in the 

figures 4.7, 4.8 and 4.9. For example, in the central core of the jet 

the. values observed by Bradbury (1965) of ~2>U; is lower by as much as 50% 

than that of Gutmark and Wygnanski (1976) and about 25% lower than the 

data of Heskestad (1965). On the other hand, Bradbury observed a value 

of ~/u; which is 30% higher than that given by Gutmark and Wygnanski. 

Here we have to note that Bradbury's jet exhausted into a; para;l1el stream 

which was moving at .16 of the jet exhaust velocity. So if we exclude 

Bradbury's result from comparison the d;'screpancies between Heskestad and 

Gutmark and Wygnanski will be sufficient to raise the question about the 

reliability of the data. The calcUlated profile as seen in the figures 
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4.7-4.9 agree well with the data for ~ > .1 and takes an average value of 

the above data for ~ ~ .1. However, we recall that the agreement between 

the data and calculated profiles for the turbulence kinetic energy 

(k • t (~+v2+w2)/U~ was fair in the k-£ model result. The turbulent shear 

stress for the plane jet is shown in figure 4.10. The above data are in 

fair agreement while the similarity solution underestimate the shear stress 

near; • .1 but agrees well with the data near the centerline of the jet 

and for ~ > • 1 • 

c) Dissipation Rate 11£" 

For the plane jet the dissipation level of the kinetic energy of tur-

bulence as predicted by the k-€ model and Reynolds stress similarity solution 

are in good agreement as seen in figure 4.14. We recall that energy and 

dissipation rate equations have been shown to be well balanced (Chapter 3). 

For the round jet the calculated dissipation rate using the k-€ model is 

higher at the centerline of the jet and lower for ~ ~ ~ss than that given 

by the Reynolds stress solutions. This error in the dissipation rate for 

the k-£ model was a result of the model constants as mentioned earlier. 

d) Model Parameters 

The calculated values of th~ fUnction~o for the decay rate of turbulence 

kinetic energy and the parameter C, in the return to isotropy term of the 

Reynolds stress equations are shown in figure 4.12 for both plane and axi-

symmetric self-similar jets. As it can be seen from figure 4. 12,~0 de-

creases slightly as we go toward the outer edge and it is nearly equal for 

both plane and round jet. In the same figure the variation of Cl ;s shown, 

which,in fact t shows an interesting behavior. At the jet axis for both 

cases,plane and round jet,C, takes a value of about 3.5 which ;s close to 

the value' suggested by Lumley (1978). Then Cl increases to a maximum of 
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4.Sfor the round jet and 6.4 for the plane jet at ~ ~ .OS. The variation 

of the turbulent eddy viscosity (Vt~ ~2/E)across the jet is shown in 

Figure 4.13. The shape of Vt as obtained from the stress similarity solution 

is somewhat similar to that obtained in the k-E model solution except here 

vt is seen to decrease at about ~ ~ .1 while in the k-e: model formulation 
~ 

the ratio q2 Ie: decreases at about ~ ~ .2 as both ~ and e: vanish at the 

outer edge of the jet. The C1 decreases only gradually as ~ +~. The 

difference in magnitude of C, for the plane and axisymmetric jet is due to 

the variation of first and second invariant of the isotropic tensors 

(see figure 2.4). 

4.S Conclusion 

The mean and turbulent profiles obtained using the Reynolds stress 

d.isplay satisfactory behavior in both flows, plane and round jets when they 

were compared with the data. The model constan~wl and c has been taken 

as suggested by Reynolds (1976), namely l/J, = 2 and c = -.15. This choice 

of ., and c seemsto work best for the turbulent jet. A similar behavior has 

been observed in the turbulent wake calculations (see Taulbee and Lumley 

19S0). If we increase w1 slightly the kinetic energy of turbulence increases 

while the turbulent shear stress decreases. On the other hand c controls 

the pressure strain terms in the Reynolds stress equation. Changing c 

slightly is seen to affect the normal components of the Reynolds stress 

more than the turbulent shear stress. In previous theoretical work, 

launder and Morse (1976) found that the spreading rate of the jet is 50% 

higher than the observed values. However Launder and Morse used only 

constants in their Reynolds stress model. They indicate that the difficulty 

1n the computation arises from dissipation euqations. In the current cal-

culation this behavior is not observed. The spreading rate which has been 

calculated USing the Reynolds stress similarity solution is somewhat higher 
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than the data but not by far as much as it is found in Launder and Morse's 
calculations. 

The discrepancies in Launder and Morsels results might not be attributed 

to the source-sink term in the dissipation equation as indicated by the 

authors.but is likely due to their model for the transport terms. 

The results of the present model which is well behaved for both 

plane and round jets. indicate that the return to isotropy function Cl which 

1s used in the diffusion transport as well,varies considerably across the 

jet (see Figure-4.12),while the Launder and Morse model uses a pure constant 

for the diffusion transport which is based on computer optimization. 
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Figure 4.1 Mean Velocity Profile of Turbulent Round Jet 
(0) Abbiss et ale (Pulsed wire)(1975) 
(x) Wygnanski and Fiedler (1969) 
(-) Reynolds Stress Similarlty Solution 
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Figure 4.2 Axial Component of Reynolds Stress for the Round Jet 
(0) Rodi (1975) 
(x) Wygnanski and Fiedler (1969) 
(-) Reynolds Stress Similarity Solution. 
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Figure 4.3 Radial Component of Reynolds Stress for the Round Jet. 

Notation as in Figure 4.2 
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Figure 4.4 Azimuthal Component of Reynolds Stress for the Round Jet. 

Notations are the same as in Figure 4.2. 
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o • 1 .2 

Figure 4.5 Shear Stress Profile for the Round \let 

(0) Rod; (1975) 
(a) Abb;ss et al. (Pulsed w;re)(1975) 
(x.) Wygnanski and Fiedler (1969) 
(-) Reynolds Stress Similarity Solution 

r 
x 
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Figure 4.6 Mean Velocity Profile for Plane Jet 

(0) Bradbury (1965) 
(d) Heskestad(1965) 
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(x) Gutmark and Wygnanski (1976) 
(-) Reynolds Stress Similarity Solution 
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Figure 4.7 Axial Component of the Reynolds Stress for 

Plane Jet. 
Notations are the same as in Figure 4.6. 
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Figure 4.8 Vertical Component of the Reynolds Stress for 

Plane Jet. 
Notations are the same as in Figure 4.6 
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Figure 4.9 Horizontal Component of the Reynolds Stress 
for Plane Jet. 
Notations are the same as in Figure 4.6 
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Figure 4.10 Shear Stress for Plane Jet 

The notations are the same as in Figure 4.6 
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Figure 4.11 Radial Mean Velocity Profile of Turbulent Free Jets 
(---) Plane Jet, (---) Round Jet 
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7.0 

Plane Jet 

6. 

Round Jet 

4. 
• .. == == - -.::_::-::=-~ ....... ___ ~~..::7_ 

~----:--

Round Jet 

o -r------------------~--------------~--------
.1 .2 Y 

x 
Figure 4.12 Variation of Reynold Stress Model Parameters Across 

Self-preserving Turbulent Jet 

(---) The return to isotropy function (C,) 
(-.-), (----) Kinetic energy decay function $0 
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Figure 4.13 Calculated Variation of Turbulent Eddy Viscosity 
Across the Self-preserving Jet 
(---) Round Jet, (---) Plane Jet 
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Figure 4.14 Calculated Dissipation Rate of Turbulence 
Kinetic Energy Across Plane Jet. 
(-) (k-d model similarity solution 
(---) Reynolds stress similarity solution 

:t.. x 
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.2 - ....... 

Figure 4.15 Calculated Dissipation Rate of Kinetic Energy 
of Turbulence for Axisymmetric Self-similar 
Turbulent Jet 

(---) (k-€) Model similarity solution 
(---) Reynolds stress similarity solution 
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CHAPTER 5 

Momentum Balance Consideration 

5.1 Introduction 

The development of turbulence models relies heavily on experimental 

data in order to determine the model parameters and constants. It is there-

fore essential to have reliable experimental results against which the pre-

dicted values can be compared. Figures (4.1) and (4.6) show that the calcul-

ated and measured mean velocity profiles in the far field of plane and round 

jets are in fairly good agreement. The discrepancies are mostly at the outer 

edge of the jet; they are, however, significant with respect to the conserva-

tion of momentum for the axisynlTletric jet since,. unlike the plane jet, the 

largest contribution to the momentum integral comes from the region ~ > 0.05. 

This is illustrated in Figure (5.3) which shows the momentum balance for the 

round jet. 

Based on the analysis of C. B. Baker (1980) all the measurements for 

the axisymmetric jet might be seriously in error since they fail to conserve 

momentum. He argued that, due to the high intensities of turbulence at the 

outer edge of the jet, the hot wire measurements are unreliable. He assumed 

that the measured values at the centerline of the jet, where the intensities 

are not as high, should be more likely to be correct. 

In the present study we have considered the self-similar axisymmetric jet, 

and the plane jet as well. The measured mean velocity profiles are in fairly 

good agreement when they are normalized with their respective centerline values • 

. (Note that an exception to this'is the experiment of Abbiss et al. with a pulsed 

wire technique. This may be attributable to the fact that the experiment 

was performed for x/do < 30, where the jet may not be quite self-similar.) 

The major discrepancies in the measurements for both plane and round jets 

appear to be in the variation of the mean velocity at the centerline, 

see. Fi gure (5.1) and (5.2). Thi s mi ght lead us to assume that the loss 
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momentum is due to uniform errors in the measurement of the jet mean velo-

city throughout the flow, and at the centerline in particular, since the 

experimental data yield nearly the same values for the spreading rate for 

the respective cases, plane or round jet (see George et a1. 1981). 

5.2 Momentum Integral 

In Appendix A the equations for the mean motion of isothermal, in-

compressible and self-preserving turbulent jet have been discussed in some 

detail. Based on order of magnitude analysis for high Reynolds number thin 

shear flows, the mean momentum equations have been approximated. If we re-

tain the second order terms the integrated momentum equation across the 

flow· reads: 

(5.1) 
o 

where 

(5.2) 

Recall that i=O corresponds to two-dimensional and i=l for the round jet. 

Equation (5.1) can be written in similarity form as: 

CD .• U 2 d 

J "2 g 2 +g3 1 i _ 0 1 0 i + 1 
[f .+9,- " i+1 ]~ ~ - 2 i+1 (i+l) (5.3) 

o 2Um ~ 

By substituting the expressions for ~ and Urn from equation (3.26) and (3.42c), 

t equation (5.3) takes the form: 

(5.4) 

where C is the proportionality constant in the decay law for the centerline 

mean velocity of " the jet. 
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For the plane jet, the momentum integral constraint"becomes 
00 

2c2 f [f2 + gl - g2Jd~ = 1.0 (5.5) 
o 

and for the round jet, we have 
00 

8e2 f [f2 + gl - g2;g3]~d~ = 1.0 (5.6) 
o 

In the equations (5.5) and (5.6) we have included the turbulent contri-

but; on to the momentum integral.. The net contri buti on of the turbu 1 ence to 

the momentum amounts to about 8% of the total momentum added at the source. 

{see Tables (5.1) and (5.2)). 

5.3 Momentum Balance 

For any experimental data to be reliable it must satisfy the momentum 

equation (i.e., equation 5.1). This seems not to be the case in most re-

ported experimental data. 

The measurements of Wygnanski and Fiedler (1969) represent the most 

comprehensive attempt to characterize the axisymmetric and fully developed 

jet. The same can be said. about the measurement of Gutmark and Wygnanski 

(1975) for the plane jet. For comparison with the above data, Rodi's (1975) 
'* and Abbiss et al.(1975), measurements will be used for round jet; the data 

of Heskestad (1965) and Bradbury*(1965) will be used for the plane jet. The 

reported mean and turbulence profiles of the above experiments has been 

integrated graphically and the results substituted into equation (5.5) for 

the plane jet and in equation (5.6) for the round jet. The values of C in 

the above equations are either reported by the authors or have been obtained 

from Figures (5.1) and {5.2}. 

* Abbiss et ale measurements were only for x/do ~ 30 whe.re the jet 
is not quite self-preserving, hen.ce comparisons apP.iy only to the mean 
velocity profiles. 

** In Bradbury experiment the free stream velocity is not zero, hence the flow 
is strictly speaking not self-similar. (see Hinze 1975). 
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The results are shown in Table (5.1) and (5.2) for the round and plane 

jet respectively, along with the similarity solutions obtained earlier. The 

loss of momentum is in range 2-30% of the total momentum in the plane jet and 

up to 40S for the round jet. 

This is sufficient to raise a serious question about the accuracy of 

the experimental measurements. The reported values of C are in the range 

5.0-6.0 for the round and 2-2.4 for the plane jet. The discrepancy in the 

constant C between Rodi1s data and those of Wygnanski and Fiedler, as it can 

be seen from Figure (5.R), is largely for x/do> 60. Note that Rodi only 

measured to x/d = 75 while Wygnanski and Fiedler measured to x/do = 100. 

Hence it is not quite clear whether either set is self-preserving and which 

is the most reliable. At the final stages of this study, S. Capp (1981) 

obtained C • 6.25 using laser Doppler anemometer in the laboratory at SUNYAB 

and showed that the measured velocity profile up to x/do = 120 satisfies 

momentum. These date were obtained too late to be analyzed further here. 
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Variation of the Mean Velocity Along the 
Centerline of an Axisymmetric Jet. 
(0) Wygnanski and Fiedler (1969). 
(x) Rodi (1975). 
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Figure 5.3 Momentum Balance for Self-preserving 
Axisymmetric Jet. 

(1)- ~f2, (2) - ~gl' (3) - ~(g2+g3)/2 from Wygnanski and Fiedler 
(4)- Momentum integral evaluated from Rod; 's data. 
(5)- Momentum integral evaluated from Wygnanski and Fiedler's 

data. 



www.manaraa.com

00
 

GD
 

.. 
GO

 

Re
fe

re
nc

e 
dt

 
C

 
M~l

 f 
~,
dt
 

-1
 

f 
-1

 
f 

-1
 
f 

dx
 

"0 
91

 td
t 

"0 
92

(d
t 

"0 
93

 (
d(

 
0 

0 
0 

0 

W
yg

na
ns

ki 
an

d 
.0

86
 

5.
0 

.5
40

 
.1

22
 

.0
6 

.0
64

 
Fi

ed
le

r 

Ro
di 

.0
86

 
6.

0 
.7

70
 

.1
7 

.09
1 

.-1
06

 

A
bb

iss
 e

t 
a 1

-
(1

 a
se

r)
 

.0
88

 
.7

5 
. 1

7 
.0

8 
-

(p
ul

se
d 

w
ire

) 
. 1

0 
5.

5 
.9

2 
.1

7 
-

-

Si
m

ila
ri

ty
 

So
lu

tio
n 

.0
95

 
5.

8 
.9

19
 

. 1
5 

.07
1 

.0
7 

--
-
-
-
-
-
~
-
~
-
-
-
-
-
-

-
-
-
-
-
-

Ta
bl

e 
5.

1 
M

om
en

tum
 B

al
an

ce
 f

or
 t

he
 A

xi
sy

m
m

etr
ic 

Je
t.

 

* 
2 

fGD
2

+2 
A

bb
iss

 e
t 

al
e 

di
d 

no
t 

m
ea

su
re

 v
' 

w
ith

 t
he

 p
ul

se
d 

w
ire

 a
nd

 t
he

 v
al

ue
 o

f 
v 

~ 
td

t 
ha

s 
be

en
 a

ss
um

ed
 

to
 b

e 
th

e 
sa

m
e 

as
 i

n 
th

e 
la

se
r 

m
ea

su
re

m
en

t. 
0 

Urn
 

~
 

Mo
 

.6
0 

.8
4 

.8
4 

1.
0*

 

1.
0 

I 

.....
. ......
 

()
) 



www.manaraa.com

OG
 

cp
 

GO 
Re

fe
re

nc
e 

dl
 

C
 

M
;l 
J f2 dt

 
-1

 J 
~l

f 
g2

d (
 

M(
GO

)/M
o 

dx
 

"0 
·g

ld
( 

0 
0 

0 

Gu
tm

ark
 a

nd
 

W
yg

na
ns

ki 
.1

05
 

2.
35

 
.8

8 
• 1

6 
.0

6 
.9

8 
(1

97
5)

 
• 

H
es

ke
sta

d 
(1

96
5)

 
.1

12
 

2.
0 

.6
8 

.0
8 

.0
4 

.7
2 

* 
Br

ad
bu

ry
 

.1
09

 
2.

30
 

.8
6 

· 1
0 

.0
8 

.8
8 

, , 

( 1
96

5)
 

i 

--
' 

--
' 

Si
m

ila
ri

ty
 

• 1
10

6 
2.

34
 

.9
5 

· 1
 

.0
5 

1
.0

 
So

lu
tio

n 
.....

.... 

Ta
bl

e 
5.

2 
M

om
en

tum
 B

al
an

ce
 f

or
 S

el
f-

pr
es

er
vi

ng
 P

la
ne

 J
et

. 

* f
or

 B
ra

db
ur

y 
ex

pe
rim

en
t 

UE
/U

m
 =

 .1
6,

 w
he

re
 U

E 
is

 t
he

 p
ar

al
le

l 
fr

ee
 s

tre
am

 v
el

oc
ity

 a
t 

th
e 

ou
te

r 
ed

ge
 o

f 
th

e 
je

t,
 d

t 
is

 n
ot

 c
on

st
an

t 
an

d.
 10

9 
is

 a
n 

av
er

ag
e 

va
lu

e 
of

 d
t. 

dx
 

dx
 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

118 

CHAPTER 6 

Summary and Conclusions 

In the past decade considerable efforts have been given to the develop-

ment of the second order models of turbulence. Much success has been 

achieved in predicting various classes of turbulent flows. Particularly 

noteworthy are the predictions of Rodi and Spalding (1970), Rodi (1972), 

Hanjalic and Launder (1972), Reynolds (1976), Launder and Morse (1979) and 

most recently Hanja1ic and Launder (1980) to name but a few. In the majority 

of the above, second order prediction methods the model constants have been 

"tuned" to fit the respective experimental data (e.g. jets, wakes, mixing 

layers, etc. 

In the present study, for that matter, the k-e model caiculation is no 

exception. As stated earlier the diffusion constants in the k- and e-equa-

ti0nc7must be related so that ae = 2oko By making this modification the 

constants in the production/destruction terms of the dissipation rate equa-

tion,Cel and Ce2 , have to be tuned to fit the experimental data. It has 

been concluded that the set of constants which predict the flow for the plane 

jet do not do so for the round jet. This is the best that can be done for 

the k-e model at the present time. However, our main objective here in 

applying the k-e model was to test several numerical schemes that have been 

developed for the Reynolds stress closure model. For the set of constants 

proposed (Table 3.2) the k-e model predictions agree well with the experi-

mental data. This, however, does not imply that the choice of the model 

constants is final, or that they are constant at all. 

In the preceeding chapter (Chapter 5) it has been shown that the majority 

of the experimental data are in ertor and hence not reliable. Because of 

this uncertainty in the measurement there has been !!p. attempt to "tune" the 
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model constants in the application of the present Reynolds stress closure 

model to obtain better agreement with the measured values. Rather, the 

emphasis in the work has been to determine what the model predicts with 

objectively determined universal parameters and constants. In order for 

any model to predict unknown flows, it must be universal in nature. Hence 

the model parameters must be functions of the local state of turbulence 

which is th~ case in the present closure model. The return to isotropy 

function C1C which also controls the diffusive transport of uiuj is a 

function of the turbulence Reynolds number and the local anisotropy. 

There were wide views about the values of C1 in previous calculations. 

For example, Zeman and Lumley (1976) suggest C1 = 3.25. Other values sug-

gested were 5.6 by Hanja1ic and Launder (1972), 6.7 by Wyngaard and Cote 

(1974),3.0 by Launder, Reece and Rodi (1975), and 2.5 by Reynolds (1976). 

Zeman and Tennekes (1976) obtained seven different values of C1 between 1.8 

and 3.8 by examining seven different homogeneous turbulence experiments. 
* From the present result (Figure 4.12), the variation of C1 as a function of 

Rt ' II and III covers nearly all the above suggested values for this para-

meter. This lends credence to the view that C1 is a universal function. 

The variation of IPo' the parameter that controls the kinetic energy decay 

(to be compared with Ce2 in Launder et ale formulation), is not too large 

across th~ jets in the present calculation or in the wake calculation of 

Taulbee and Lumley (1980). This suggests that the discrepancies in the 

Reynolds stress results of Launder and Morse (1979) are not entirely due to 

the effect of Ce2 (Launder notation), but rather to the constant used in 

the diffusion term in their calculations. 
* The functional behavior of C] seems to be similar to that seen by Taulbee 
and Lumley (1980) in their waRes calculations. 
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The remaining model parameters (present model) are wl' the constant 

in the production term of e- equationsand c, the constant in the pressure 

strain terms. These were assigned fixed values. For turbulent free shear 

flows Reynolds (1976) suggested wl = 2.0 and c = -.15. These values appear 

to give reasonable results in both the round and plane jets. The lack of 

reliable measurement data makes the choice of W, and c difficult at the 

present time. 
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ABSTRACT 

This dissertation addresses the problem of predicting the flow field 

of self-preserving turbulent jets. It identifies the lack of universality 

of second order closure models with constant coefficients. It has been 

shown that the diffusion constants in the k-e model,crk and cre,must be 

related so that cre = 2crk in order to have an asymptotic solution. Based 

on this modification a set of constants for the (k-e) model has been 

proposed. 

Following Lumley (1978),a second order closure model with variable 

coefficien~has been developed. In this formulation care is taken to satisfy 

realizability, non-negative quantities are never negative and Schwarz's 

inequality is satisfied. 

An analysis of existing data for simple decaying anisotropic axi-

symmetric turbulence shows that the return to isotropy function C, depends 

on the turbulent Reynolds number and the first and second invariants of 

the anisotropy tensor~ The form proposed for Cl by Chung (1978) is shown 

to violate realizability condition. 

The equation for the Reynolds stresses and the dissipation rate equation 

are transformed to curvilinear coordinate system for the axisymmetric jet. 

The similarity f~rms of the closed Reynolds stress and dissipation rate 

equ'ations along with the equations for the mean flow are solved numerically 

to determine the equilibrium behavior of the two-dimensional and ax;synmetric 

jets. A numerical scheme that solves the system of equations at each grid 

point simultaneously is introduced. It turns out that the model with the 

same set of parameters and constants predicts the flow for both round and 

plane jets equally well. 

Review of the existing measurements for the plane and round jets show 

that the majority of the reported experimental data arei" error, sinGe they 
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An analysis of existing data for simple decaying anisotropic axi-

symmetric turbulence shows that the return to isotropy function C, depends 

on the turbulent Reynolds number and the first and second invariants of 

the anisotropy tensor~ The form proposed for Cl by Chung (1978) is shown 

to violate realizability condition. 

The equation for the Reynolds stresses and the dissipation rate equation 

are transformed to curvilinear coordinate system for the axisymmetric jet. 

The similarity f~rms of the closed Reynolds stress and dissipation rate 

equ'ations along with the equations for the mean flow are solved numerically 

to determine the equilibrium behavior of the two-dimensional and ax;synmetric 

jets. A numerical scheme that solves the system of equations at each grid 

point simultaneously is introduced. It turns out that the model with the 

same set of parameters and constants predicts the flow for both round and 

plane jets equally well. 

Review of the existing measurements for the plane and round jets show 

that the majority of the reported experimental data arei" error, sinGe they 
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fail to conserve momentum. The lack of momentum balance seems to be primarily 

attributable to the error in the centerline measurements, and not entirely to 

thE! profile shape as eralier suspected (Baker 1980). 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

Acknowledgements 

Abstract 

List of Tables 

List of Figures 

Chapter 

1 

2 

TABLE OF CONTENTS 

Title 

Introduction 

1.1 Background 

1.2 Theoretical Models 

1.3 Scope and Object 

The: Reynolds Stress Closure 

2.1 Equations for the Mean Flow 

2.2 The Reynolds Stress Equation 

2.3 The Kinetic Energy Equation 

2.4 The Dissipation Rate Equation 

2.5 The Reynolds Stress Closure 
Ppproximation 

2.6 A Model for the Dissipation 
Equati on 

2.7 Decay of Isotropic Turbulence 

2.8 Determination of ~1 

2.9 Return to Isotropy 

2.10 Determination of C, 

2.11 The Rapid Terms 

2.12 Transport Terms 

2.13 Transport Terms for € 

2. 14 The Final Form of the Reynolds 
Stress Closure 

Page No. 

i 

iii 

iv 

1 

2 

4 

7 

8 

9 

10 

11 

14 

16 

19 

20 

22 

25 

28 

31 

32 

Higher order closure model for turbilent jetsالعنوان:

.Seif, Ali Aالمؤلف الرئيسي:

Taulbee, Dale B.(Super)مؤلفين آخرين:

1981التاريخ الميلادي:

بوفالوموقع:

168 - 1الصفحات:

:MD 618359رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

State University of New York at Buffaloالجامعة:

Faculty of the Graduate School \\\\\\\\\\\\\\tالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

المحاكاة، النمذجة، البرمجيات، الحاسبات الالكترونية، هندسة الطائراتمواضيع:

https://search.mandumah.com/Record/618359رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي للاستخدام

حقوق النشر أو دار المنظومة.

https://search.mandumah.com/Record/618359


www.manaraa.com

Acknowledgements 

Abstract 

List of Tables 

List of Figures 

Chapter 

1 

2 

TABLE OF CONTENTS 

Title 

Introduction 

1.1 Background 

1.2 Theoretical Models 

1.3 Scope and Object 

The: Reynolds Stress Closure 

2.1 Equations for the Mean Flow 

2.2 The Reynolds Stress Equation 

2.3 The Kinetic Energy Equation 

2.4 The Dissipation Rate Equation 

2.5 The Reynolds Stress Closure 
Ppproximation 

2.6 A Model for the Dissipation 
Equati on 

2.7 Decay of Isotropic Turbulence 

2.8 Determination of ~1 

2.9 Return to Isotropy 

2.10 Determination of C, 

2.11 The Rapid Terms 

2.12 Transport Terms 

2.13 Transport Terms for € 

2. 14 The Final Form of the Reynolds 
Stress Closure 

Page No. 

i 

iii 

iv 

1 

2 

4 

7 

8 

9 

10 

11 

14 

16 

19 

20 

22 

25 

28 

31 

32 



www.manaraa.com

TABLE OF CONTENTS (cont.) 

Chapter Title Page ~t-.lo. 

3 The Two Equation Models 

3. 1 Introduction 34 

3.2 The Eddy Viscosity Concept 34 

3.3 The k-e Closure Model 36 

3.4 The Fina1 Form of the k-€ Model 37 

3.5 Similarity Formulation 38 

3.6 Quasi-Linearization 46 

3.7 The "finite ll Difference Equations 48 

3.8 Similarity Solution 50 

3.9 Proposed Model Constants 53 

3.10 Results and Discussion of the 
k-e Model 54 

3.11 Concluding Remarks ::9 

4 Application of the Reynolds Stress Model 

4.1 Introduction 73 

4.2 The Reynolds Stress Equation 74 

4.3 Boundary Conditions 77 

4.4 Similarity Solution 78 

4.5 Model"s Parameters 83 

4.6 Numerical Solution 85 

4.7 Results 88 

4.8 Conclusion 92 

5 Momentum Balance Consideration 

5.1 Introduction 109 

5.2 Momentum Integral 110 

5.3 Momentum Balance 111 



www.manaraa.com

TABLE OF CONTENTS (cont.) 

Chapter Title Page No. 

6 Summary and Conclusions 118 

References 121 

Appendices 

A Equations of Motion for the 
Mean Flow 

1. Plane Jet 130 

II. The Axisymmetric Jet 135 

B Analytical Solutions 139 

I. The Plane Jet 140 

II. The Axisymmetric Jet 142 

C Initial Profiles 144 

0 Reynolds Stress Equations in 
Cartesian Coordinate Systems 149 

E Reynolds Stress Equations in 
Cylindrical Coordinate System 156 

F 166 

Numerical Scheme 166 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

Ii I GHER ORDER CLQSURE f'OIEL 
RJR TURBULENT JETS 

BY 

ALI Ai SElF 

A DISSERTATION SUB/v~Irr::D TO THE FACULTY 
OF THE GRADUATE SCHOOL OF STs!'\TE UNIVERSITY 

OF i~EW yc~;( AT BUFF.l\LO W ?M~TIAL FULFIUJv1ENT 
OF THE REQU!REJ'I\ENTS FOR THE DEGREE OF 

DOCTDS', OF PH I LOSOPHY 
"'-:;~~-:"-~M""":"~_ 

SEPTF;<ScR 1981 

Higher order closure model for turbilent jetsالعنوان:

.Seif, Ali Aالمؤلف الرئيسي:

Taulbee, Dale B.(Super)مؤلفين آخرين:

1981التاريخ الميلادي:

بوفالوموقع:

168 - 1الصفحات:

:MD 618359رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

State University of New York at Buffaloالجامعة:

Faculty of the Graduate School \\\\\\\\\\\\\\tالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

المحاكاة، النمذجة، البرمجيات، الحاسبات الالكترونية، هندسة الطائراتمواضيع:

https://search.mandumah.com/Record/618359رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي للاستخدام

حقوق النشر أو دار المنظومة.

https://search.mandumah.com/Record/618359


www.manaraa.com

Ii I GHER ORDER CLQSURE f'OIEL 
RJR TURBULENT JETS 

BY 

ALI Ai SElF 

A DISSERTATION SUB/v~Irr::D TO THE FACULTY 
OF THE GRADUATE SCHOOL OF STs!'\TE UNIVERSITY 

OF i~EW yc~;( AT BUFF.l\LO W ?M~TIAL FULFIUJv1ENT 
OF THE REQU!REJ'I\ENTS FOR THE DEGREE OF 

DOCTDS', OF PH I LOSOPHY 
"'-:;~~-:"-~M""":"~_ 

SEPTF;<ScR 1981 



www.manaraa.com

D E DIe A T ION 

TO r1Y PARENTS 



www.manaraa.com

ACKNOWLEDGEMENTS 

The author wishes to express his gratitude to his advisor, Professor 

Dale B. Taulbee whose kindness, human understanding, help and excellent 

guidance made this accomplishment possible. Special thanks are due to 

Professor Will iam K. George for hi s val uab 1 e suggesti ons and comments in 

reviewing this thesis and making numerous corrections. 

My thanks and appreciation are also due to the Saudi> Arabian Govern-

ment for the financial support they provided during the entire period of 

my graduate study. Further I woula like to thank certain members of the 

SaudL Arabian Ministry of Higher Education, Riyadh University, and the 

Saudi..: Arabia Educational Mission in Houston for their cooperative effort 

and understanding. 

A very special thanks goes to my wife for her patience and encourage-

ment, my sons Raied and Abdulatif and the rest of my family in Saudh 

Arabia for their moral support. 

Appreciation is also extended to Mrs. Eileen Graber for her capable 

typing of this thesis. 



www.manaraa.com

Acknowledgements 

Abstract 

List of Tables 

List of Figures 

Chapter 

1 

2 

TABLE OF CONTENTS 

Title 

Introduction 

1.1 Background 

1.2 Theoretical Models 

1.3 Scope and Object 

The: Reynolds Stress Closure 

2.1 Equations for the Mean Flow 

2.2 The Reynolds Stress Equation 

2.3 The Kinetic Energy Equation 

2.4 The Dissipation Rate Equation 

2.5 The Reynolds Stress Closure 
Ppproximation 

2.6 A Model for the Dissipation 
Equati on 

2.7 Decay of Isotropic Turbulence 

2.8 Determination of ~1 

2.9 Return to Isotropy 

2.10 Determination of C, 

2.11 The Rapid Terms 

2.12 Transport Terms 

2.13 Transport Terms for € 

2. 14 The Final Form of the Reynolds 
Stress Closure 

Page No. 

i 

iii 

iv 

1 

2 

4 

7 

8 

9 

10 

11 

14 

16 

19 

20 

22 

25 

28 

31 

32 



www.manaraa.com

TABLE OF CONTENTS (cont.) 

Chapter Title Page ~t-.lo. 

3 The Two Equation Models 

3. 1 Introduction 34 

3.2 The Eddy Viscosity Concept 34 

3.3 The k-e Closure Model 36 

3.4 The Fina1 Form of the k-€ Model 37 

3.5 Similarity Formulation 38 

3.6 Quasi-Linearization 46 

3.7 The "finite ll Difference Equations 48 

3.8 Similarity Solution 50 

3.9 Proposed Model Constants 53 

3.10 Results and Discussion of the 
k-e Model 54 

3.11 Concluding Remarks ::9 

4 Application of the Reynolds Stress Model 

4.1 Introduction 73 

4.2 The Reynolds Stress Equation 74 

4.3 Boundary Conditions 77 

4.4 Similarity Solution 78 

4.5 Model"s Parameters 83 

4.6 Numerical Solution 85 

4.7 Results 88 

4.8 Conclusion 92 

5 Momentum Balance Consideration 

5.1 Introduction 109 

5.2 Momentum Integral 110 

5.3 Momentum Balance 111 



www.manaraa.com

TABLE OF CONTENTS (cont.) 

Chapter Title Page No. 

6 Summary and Conclusions 118 

References 121 

Appendices 

A Equations of Motion for the 
Mean Flow 

1. Plane Jet 130 

II. The Axisymmetric Jet 135 

B Analytical Solutions 139 

I. The Plane Jet 140 

II. The Axisymmetric Jet 142 

C Initial Profiles 144 

0 Reynolds Stress Equations in 
Cartesian Coordinate Systems 149 

E Reynolds Stress Equations in 
Cylindrical Coordinate System 156 

F 166 

Numerical Scheme 166 



www.manaraa.com

· 1 

ABSTRACT 

This dissertation addresses the problem of predicting the flow field 

of self-preserving turbulent jets. It identifies the lack of universality 

of second order closure models with constant coefficients. It has been 

shown that the diffusion constants in the k-e model,crk and cre,must be 

related so that cre = 2crk in order to have an asymptotic solution. Based 

on this modification a set of constants for the (k-e) model has been 

proposed. 

Following Lumley (1978),a second order closure model with variable 

coefficien~has been developed. In this formulation care is taken to satisfy 

realizability, non-negative quantities are never negative and Schwarz's 

inequality is satisfied. 

An analysis of existing data for simple decaying anisotropic axi-

symmetric turbulence shows that the return to isotropy function C, depends 

on the turbulent Reynolds number and the first and second invariants of 

the anisotropy tensor~ The form proposed for Cl by Chung (1978) is shown 

to violate realizability condition. 

The equation for the Reynolds stresses and the dissipation rate equation 

are transformed to curvilinear coordinate system for the axisymmetric jet. 

The similarity f~rms of the closed Reynolds stress and dissipation rate 

equ'ations along with the equations for the mean flow are solved numerically 

to determine the equilibrium behavior of the two-dimensional and ax;synmetric 

jets. A numerical scheme that solves the system of equations at each grid 

point simultaneously is introduced. It turns out that the model with the 

same set of parameters and constants predicts the flow for both round and 

plane jets equally well. 

Review of the existing measurements for the plane and round jets show 

that the majority of the reported experimental data arei" error, sinGe they 
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fail to conserve momentum. The lack of momentum balance seems to be primarily 

attributable to the error in the centerline measurements, and not entirely to 

thE! profile shape as eralier suspected (Baker 1980). 
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1.1 Background 

CHAPTER I 

I!1troduct i on 

Jet engines, wakes behind airplanes and submarines, mixing layers, 

water disposal in rivers, chimney plumes and all kinds of motion in the 

atmosphere are a few examples of turbulent free shear flows which the 

engineers and the meteorologists as well, wish to predict. There are, 

in fact, many other flows of practical importance that need not to be 

boundary free as in the above flows. Examples of these flows are channel, 

pipe, and boundary layer flows. However, the process of free turbulent 

mixing is prominent in all these flows. Hence the theory of free shear 

flows, in general, applies to these flows as well. 

The above classical flows have long been favorites for turbulence 

investigators because of the easy manner in which they can be generated 

in the laboratory. Another' important characteristic of these flows, is 

their tendency to become fully developed and self-preserving '(at least in 

principle) after a certain· development region. This enables theoreticai 

investigators to approximate the equations of motion based on physical 

grounds,such as order of magnitude analysis. 

At the turn of the century the advances'in the study of turbulent-flow 

~blems were made primarily in the laboratory where basic insights into 

the general nature of turbulent flows were developed and the behavior of 

selected families of flows were studied systematically. For engineers and 

meteorologists there were only a limited number of useful tools, such as 

boundary layer prediction methods which solve the momentum integral equation 

with a high empirical content. Turbulent flow features such as sudden 

changes in boundary conditions, separation or recirculation could not be 

1 
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predicted by these early methods with any degree of reliability. Hence 

empirical work remained an essential ingredient in many engineering analysis. 

Halfway into this century the computer began to have a major impact on 

engineering computations and the development of a theoretical model capable 

of predicting turbulent flows with a fair degree of accuracy began to 

attract many" researchers in this field. 

The exact equations that govern turbulent flows are well known; they 

are the Navier-Stokes equations. These equations, which are accepted as the 

fundamental basis for turbulent flow problems, are non-linear and strongly 

coupled; hence, an analytical approach leading to closed form solutions is 

not possible. Procedures exist to solve these equations numerically. How-

ever, the energy-dissipating eddies are so small that the computational 

mesh required must be so fine that realistic calculations cannot be carried 

out with present day computer hardware. Therefore it is customary to con-

sider statistical properties of turbulence, which is often sufficient in 

providing engineers with the required information. This approach, however, 

leads to an infinite number of correlation equations that govern the turbul-

ence properties. 

A practical way to close the system" of equations is to employ a turbul-

ent model which approximates higher order correlations (moments) in terms of 

lower order moments that can be calculated. This approximation relies heavily 

on experimental data to determine the model empirical constants and functions. 

Therefore a reliable set of experimental data must be provided to serve as 

a basis for any theoretical prediction methods. 

1.2 Theoretical Model 

The turbulence models are classified either according to the number of 

partial differential equations they employ for turbulent quantities or by the 

order of thE: moment for which the transport equations are written. 
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The first turbulence model which has been applied to turbulent free 

shear flows with some success, ;s Prandtl l s (1925) mixing-length hypothesis. 

This simple model relates the turbulent shear stress uniquely to the local 

mean velocity gradient. Then the partial differential equation for the 

mean flow is transformed to ordinary differential equations for which an 

analytical solution can be obtained. (see i.e. Appendix B) This model, 

among others of its class, often brea~ down in many situations when there 

is more than one mechanism present, piltlducin9, in ~eneral, mo"e than one 
length 6~ velocity scale. 

A second order model is expected to work better in most situations 

because it carries transport equations for second order quantities, so 

that many of the mecbanisms responsible for the production of those quan-

tities are represented accurately. Kolmogorov (1942), Prandt1 (1945), 

Chou (1945) and Rotta (1951) laid the foundation for second order models 

of turbulence. However, analytical solutions for the resulting system of 

equations could not be obtained and a numerical one was not possible at 
that time. 

By the early 70's when advances in computers and numerical methods 

Overcame the mathematical difficulties, several predictions of turbulent 

free shear flows had been made with a fair degree of accuracy. Among the 

reported models are the (k-€) model proposed by Jones and Launder (1972), 

(k-kl) model by Rodi and Spalding (1971) and the (k-w) model by Spalding 

(1972). However, these prediction methods use model constants which were 

thought to be universal, but the calculations showed that they are not. 

For example, a set of constants that predict the flow for plane jets will 

not do so for the roun~ jet. 
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Furthermore the two equation model used the eddy viscosity concept 
2 (e. g. \) t 'V k / E) ,hence they do not keep track of the dynami cs of all the 

second order correlations of importance. This led to the idea (Donaldson, 

1971; Hanja1ic and Launder, 1972b; 'Bradshaw, 1972) that the most promising 

class of turbulence models for making numerical calculations of such complex 

flows is that based on the solution of the approximated equations for the 

Reynolds stresses UiUj and indeed several proposals have been made (see 

section 2.4). 

1.3 . Scope and Object 

In the past decade considerable success (Lumley and Khajeh-Nouri, 1974; 

Launder,. Reece and Rodi, 1975; Reynolds, 1976 and Hanjalic and Launder 1976) 

have been made in predicting shear layer, jet wakes, channel flows, and 

boundary layers with reasonable degree of accuracy .. There were, however, 

some unexplained differences between calculated and measured turbulent 

quantities. 

These discrepancies arise from the neglect of some correlation terms 

in the governing equations, incomplete or inappropriate closure formulations 

for other correlations or simply not having the optimum values for the co-

efficients in closure formulations which may be functionally correct. For 

instance a set of constants in the closure formulations that gives good 

results for one flow situation sometimes does not work well for another flow. 

This is the case with the predictions for the two-dimensional and round jet 

flows (Launder and Morse, 1979). 

Although some fundamental guiding principles, i.e. invarient modeling, 

have been used in formulating clos~re relations, much is developed by ad hoe 

assumptions. With appropriately adjusted constants some of these ad hoa 

closures have performed admirably well. However, one would like to develop 
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closure formulations from first principles using rational procedures. Also 

it would be highly desirable that the model parameters and constants be 

determined as part of the calculation, or at least, determined from certain 

"key" basic experiments. Furthermore, closure formulations and the resulting 

theory should not violate certain mathematical or physical principles, e.g. 

conservation of mass and momentum. 

Using a rational approach, Lumley. (1978) formul ated a second order model 

that is an orderly expansion about a homogeneous, stationary turbulence, the 

large scales of which have a Gaussian distribution. In this formulation care 

is taken to satisfy realizability conditions. This condition implies that 

non-negative quantities are never negative and Schwarz's inequality is 

satisfied. The key coefficients in this closure rela~ion are functions of 

the local turbulent Reynolds number and anisotropy. 

The primary aim of this dissertation ;s to consider the above closure 

formulation and investigate the functional form of the model parameters based 

on the available data for a homogef'lleous decaying axisyrrmetric turbulent flow. 

The closed Reynolds stress and disSipation equations are transformed to curVi-

linear coordinates for the use in the axisymmetric jet calculations. 

The similaritYforms of the resulting system of equations for plane and 

axisymmetric flow are' solved numerically to determine the equilibrium behavior 

of turbulent (isothermal) fully developed and self-similar jets. The results 

are compared with available experimental data with the emphasis on conserva-

tion of momentum. 

C. B. Baker (1980) raised the Question about the validity of the axisym-

metric jet measurements, since they failed. to conserve momentum. He analyzed 

the data of Wygnanskf and Fiedler (1969) for an axisymmetric self-preserving 

jet and argued that the measured mean· velocity profile conserves only half 

of the momentum added at the source. (See also George, Seif and Baker, 1981). 
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On the other hand the most recently measured and calculated profiles are 

fairly in good agreement with Wygnanski and Fiedler profiles when they are 

normalized with their respective centerline value of the mean velocity. 

Hence part of this study (chapter 5) is devoted to examination of the jet 

data (plane and axisymmetric) in contrast with the results of theoretical 

predictions. 
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CHAPTER 2 

The Reynplds Stress Closure 

2.1 Equations for the Mean Flow 

The equations that govern the Imean motion of an incompressible 

isothennal turbulent flow are obtai'ned from -the Navier-Stokes equations. 

By decomposing the instantaneous velocity and pressure into a mean and tur-

bulent component and by taking the time average of all terms, the following 

equations will result (see Tennekes and Lumley 1972). 

Conservation of mass: 

U •• = 0 1 , , 

Conservation of momentum: 
. 

pU. + pU.U •. = - P,. + (l.\U •. - PlJ.u.),. 1 J 1,J 1 1,J , J J 

(2.1) 

(2.2) 

where the overbar denotes the time average, the overdot stands for the 

partial derivative with respect to time,and the subscripts after the 
aU. 

COlllllaS denote the partial differerttiation,eg.Ui,j ::: ax~' The new 
J 

unknown puiu j in the momentum equation is the contribution of the tur-

bulent motion to the mean stress tensor. It is known as the Reynolds 

stress in honor of Reynolds who first developed equation (2.2) in (1785). 

The Reynolds stress puiu j has nine components and hence introduces nine 

unknowns to the equation of motion; however,since it is a symmetric tensor 

(uiuj = ujUi ) the number of unknowns is reduced to six, three normal 

and three tangential components. 

The aim of any prediction method in turbulent modeling ;s to solve 

the momentum equation for Ui,but because of the presence of uiuj in the 

momentum equation, the system of equations ;n (2.1) and (2.2) do not consti-
tute a closed set. Closing this set of equations has b~en of major concern 
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for over a century. An earlier closure, which is known today as the zero 

order model, was originally proposed by Boussinesq in 1877. This simple 

closure model assumes that the shear stress is proportional to the mean 

velocity gradient. This approximation predicts the velocity and shear 

stress profiles for the self preserving turbulent jet (see Appendix C) 

with a good degree of accuracy over most of the flow region, but it fails 

to do so when the turbulence is in non-seTf-preserving state. However, with 

the advances of electronic facilities researchers have tried to develop a 

universaTmethod to predict the Reynolds stress accurately. The most direct 

way to detennine u;uj , of course,is to solve a transport equation for all 

non-zero components of the Reynolds stress. Such an equation, in fact, 

does exist and it will be discussed in the following section. 

2.2 The Reyno1ds Stress Eguation 

A transport equation that governs the Reynolds stress can be derived 

in the following way. The equation for the component i of the instantaneous 

velocity (U1·+u.) is multiplied by u. and the equation for the j component 
1 J 

OJ+U) is multiplied by ui . Summing of the two equations and taking the. time 

average yields the desired equation for uiu j (see Hinze,1959): 

. P 
uiuj + Uk(uiUj),k = - (uiu k Uj,k + ujuk Ui,k) + p (~j,; + Ui,j) 

(i) = convection (ii) = production (iii) = pressure strain 

- [uiu,uk - v(u.u.) k + f (u.o·k + uoo'k)] k J 1J, i:J IJ Jl, 

- 2 v u· kU' . 1, J ,K 

(iv) = diffusion 

(v) = dissipation 

(2.3) 
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As it can be seen from equation (2.3), furth.er unknowns, such as the triple 

correlation and pressure velocity correlations, have been introduced. 

This, of course, adds to the complsxity of the situation. Transport equa-

tions for the third order statistical moment u.u .uk can be again de.rived 
1 J 

in a way similar to the above; nowever,the number of unknowns will grow 

faster than the number of equations. Closing the system in equation (2.3) 

at the second order level (the Reynolds stress closure) will be discussed 

later in this chapter. 

2.3 The Kinetic Energy Equation 

For future reference let us take a look at the turbulent kinetic energy 

equation. Contraction of equation (2.3) leads to an important equation, 

the kinetic energy equation of the turbulence: 

q2 + U. q2. = _[u.(q2~ 2P)] - 2 u:u. u .. + 2 v(u.u .. ) . J,J J p ,j , J , ,J 1 1 ,J ,J 
(i) (ii) (iii) (iv) 

where 7· uiu i . 

- 2v u. ·u .. , ,J 1 ,J 

(v) 

(2.4) 

Equation (2.4) states: The change in (i), the turbulent kinetic energy 

per unit mass and unit time including the convection transport by the mean 

motion, is equal to (ii),the convective diffusion by the turbulence of the 

total mechanical energy or the work by the total dynamic pressure of the 

turbulence~ plus {iii),the work of deformation of the mean motion by the 

turbulence stresses, plus (iv),the work done by the viscous stresses of the 

turbulent motion, plus (v), the viscous dissipation by turbulent motion. To 

close the system of equations '(2.2) and (2.4) at this level, which is known 

in the literature as the one equatl0n model, the terms on the right hand 
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side of equation (2.4) will be approximated employing the eddy viscosity 

concept and specifying a characteristic length scale (see Reynolds 1976). 

However, if we go one step further and derive an additional transport equa-

tion for the dissipation €,then we have the so called two equation model. 

This model eliminates the need for specifying a characteristic length scale 
, 

as function of position throughout the flow by defining the eddy viscosity· 
2"2 as vt ~ q Ie. A detailed discussion of this model and its application 

will be presented jn Chapter three. 

2.4 The Dissipation Rate Eguation 

An exact transport equation for the dissipation rate of turbulent kinetic 

energy (i.e.,the correlation v ui,1u;,1) can be developed from the Navier-

Stokes equations for the fluctuating velocities by appropriate differentia-

tion, multiplication and averaging~ The resulting equation can be written 

as (see Daly & Harlow 1970): 

2 e: + Uk€ k" -2 v u· kU ' .uk . - 2 (vu. ok) , 1, 1,J ,J , ,J 
(i) (ii) 

- v-~ 

-(uk€ + 2 p Uk,;P,j - V€,k) ,k 
(i i i) 

-2 v(ui,jUk,j + Uj,iUj,k) Ui,k 
(iv) 

-2 VUkU •• U. ok 1 ,J 1 ,J 
(v) 

(2.5) 

It is an e~tremely difficult task to consider equation (2.5) in its entirety. 

luckily for high Reynolds numbers flow (i.e. most of the turbulent flows) 

a great simplification will result when an order of magnitude analysis is 
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employed (Tennekes and Lumley 1972). The terms (i) and (ii) which re-

present the generation of e: by the 'stretching of vortex filaments, and the 

destruction through the tendency of viscosity to reduce the instantaneous 

velocity gradients are the most dominant terms. However their difference, 

which really matters,is nearly the same order of magnitude as the transport 

terms (ii;). The terms (iv) and (v) are smaller than other terms by at 

least a factor of R~/2,where RR, is the turbulent Reynolds number; therefore, 

these terms can be safely ignored. Hence equation (2.5) can be written as 

- 2 - 2 \lU. kU ' . uk' - 2 ( \lU. • k ) . 1, 1 ,J,J 1 ,J 

(ii) (iii) (2.6) 

Still the terms on the right hand side of equation (2.6) add further unknowns 

into the equation set governing the; Reynolds stress. These terms are not 

directly accessible to measurement and therefore their approximation can 

be only verified indirectly by determining whether the predicted distribu-

tion of e: is consistent with the measured variation of the turbulent kinetic 

energy through a particular shear flow. Modeling of the transport terms,(;), 

and production-destruction terms,(;i) and (iii),;n equation (2.6) will be 

included in the analysis of the Reynolds stress closure. 

2.5 The Reynolds Stress Closure Approximation 

The Reynolds stress model begi'ns with the equations (2.1), (2.2), (2.3) 

and (2.6). In order to solve equation (2.3) for uiuj,some information about 

the higher order moments U.u ,u k and Pu. . must be provided. Those tenns 
1 J 1 ,J 

will be approximated as functions of the lower order moments. Such approx-

imations will rely heavily on experimental data to determine the proportionality 
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The idea of proposing a model like (2.3) was first suggested by 

Rotta (1951). Some predictions have been recently made following this idea 

by Daly and Harlow (1970), Reynolds (1970) Donaldson (1971), Noat, Shavit and 

Wolfstein (1972), Hanjalic and Launder (1972) and Lumley and Khajah-Nouri (1974), 

to name a few. However there have been widely different views on how to treat 

the third order. moments, the triple velocity correlation in particular. 

Before we proceed with the analysis of closing the Reynolds stress equations, 

a new arrangement of the terms involved in equation (2.3) will be made. For 

convenience in later analysis we will separate the effects of the various 

terms to be modeled and group them according to their rules and functions 

in the equations of motion. 

An expression for the pressure can be obtained by taking the divergence 

of the Navier-Stokes equations for the fluctuating velocity component ui' 

The result;s (Lumley, 1978) 

p .' 
_......a..ll = 2 U •. u .. + U. ·u· . - u·u· .. 

P 1 ,J J, 1 1 ,J J, 1 1 J, 1 J 
(2.7) 

The right hand side of equation (2.7) contains two types of terms. The 

first term is linear in the fluctuating velocity and related to the mean 

velocity gradients while the second and third are nonlinear in the fluctua-

ting velocity. If we conveniently split the pressure such that 
(1) 

p .. 
- ....!l!. 2 U = ..u.· 

p 1,J J,l (2.8) 

(2) 

P i' _...l..!.l. == u. .u. . - u.u. .. 
p 1,J J,l , J,lJ (2.9) 

where the correlations with pel) and its gradients are known as the 

'~rapid terms". While the correlations with p(2) are known as the 
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APPENDIX A 

Equations of Motion for the Mean Flow 

The dynamic equations that describe the mean motion for turbulent 

free jets are obtained from Navier-Stokes equations (Section 2.1). 

Equation (2.1) and (2.2) are written in cartesian tensor notation. In 

this appendix the equations for the mean flow will be presented in 

component-fonn for the plane arid axisymmetric turbulent free jets. An 

order of magnitude analysis will be performed based on physical grounds. 

By integrating the mean momentum e~uation and by using the continuity 

equation to eliminate the cross stream mean velocity the momentum integral 

constraint will result. 

I. The Plane Jet 

For two dimensional turbulent free jet of an incompressible isothenna1 

fluid, issuing in still surrounding, the equations for the mean motion are 

obtained from equations (2.1) and (2.2). For steady motion (ft =0-) the 

equation can be written in cartesian components as follows: 

ContjnuitX: 

i:"!"9'!'entum: 

~ + VoU + ~ = _ 1 2.E.. + liu ax ay az p ax v 
au2 auv auw ------ax ay ax 

y-momentum: 
- 2' -

~ + vll + ~ = - 1 ap' + v.iv _ ~ - 2L - ~ ax ay az p ay ax ay az 

z-momentum: 
- - 2 u3W + vl!i + waw = _ 121. + v2w _ ~ _ ~ - .£!L ax ay az P dZ v ax ay az 

(Al) 

(A2) 

(A3) 

(A4) 
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For the plane jet the following assumptions are made; 

i) There is no mean motion in the z-direction. 

ii) All derivatives with respect to this z-coordinate are zero. 

iii) The shear stress uw and vw are zero. 

Applying the above assumption equation (A4) becomes 

L (P - p7) = 0 ar 
which states that P - p;Z is a function of x and y only. The equations 

(Al-A3) reduce to; 

(A6) 

(A7) 

(A8) 

Obviously the principal mean velocity in the jet flow is the axial 

component U and hence the x-momentum is the principal equation of motion 

for the mean flow. However, we have to examine the cross-stream momentum 

equation (y-momentum) and analyze each term based on its order of magnitude 

relative to the leading terms. 

let us consider the region far away from the jet exit, Le., when the mean 

flow becomes almost parallel and the boundary layer approximation are applic-

able. In the far field of the flow we can identify two velocity scales and 

two length scales. (See Figure (Al». let land t be length scales in the 

x- and y-direction respectively and let Um be the mean velocity scale 

and u is some characteristic turbulent velocity scale such that; 

X IX o(l) , y IX oCt) , u2 ::: v2 ::: ;Z ::: 0(u2) , U = 0 (Um) 

and from conservation of mass V ::: Um(t). 
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Figure Al. Schematic Diagram of the Two Dimensional Jet and Coordinate System. 



www.manaraa.com

133 

Where the "0" stands for order of magnitude. Hence the terms in the 

y-momentum can be scaled as follows: 

duv av2 .-- --ax 'Oy 

In most free turbulent shear flows where the turbulent Reynolds number 
U R, 

RI.· ~. is relatively high we have; 

(A10) 

and 

1 R« 1.0 
I. 

(All ) 

Hence by neglecting higher order terms in (ij )2 and (t) the terms 
m 

that will be retained in equation (A8) are the first terms on the right 

side of the equation because nothing can be said about this term except 

that it must be of the same order of the last term in the equation. There-

fore- we must have, 

_ 12&. '07 
p 'Oy _ ay (A12) 

If we integrate equation (A12) with respect to y, differentiate the 

resulting equation with respect to x and substitute into equation (A7) the 

pressure is eliminated and the momentum equation becomes: 

- - - 2 2 
Uau + vi!! • _ L (u2 _ v2) _ 2.!£!. + (lJ! + lJ!) ax 'Oy ax ay v 'O x2 'Oy2 A13) 

Using order of magnitude analysis similar to the above it can be shown 

that the first and last terms on the right side of equation (A13) for first 

order approximation are negl i gibly sma 11 compared to the rest of the terms 

for the flow considered. So, the momentum equation can be approximated as: 
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uau + vau = _ a(W) ax ay ay 

Momentum Integral Constraint 

Assuming that we retain all the terms in equation (A13) but the 
2 

smallest term <; ~} the~_we have, 
x 

Uau + vlY. + .L (u2 _ v2) + auv _ . a2
U ax ay ax ---:ay - va y2 

if we make use of the continuity equation the momentum equation 

becomes; 

2 2" ~ - 2 2!L + !Y! + L (u _ v~) + ~ = .L!L ax 'Oy ax 'Oy v- ay2 

We integrate equation (A16) across the jet to obtain; 

00 00 00 00 

2 I h- [U2 + ~ - 7] dy = - 2uv I -2UV I + 2v :~ I 
000 0 

(A14) 

(A15) 

(A16) 

Since the terms on the right side of the equation vanish at both limits~ 

the momentum integra 1 becomes, 
00 

d f 2 '2 '2 dX (U + u - v )dy = 0 (Al?) 
o 

Integration with respect to x leads to: 
00 

f 2 2" 2' 2 (U + q - v )dy = Mo/p (A18) 
o 

where Mo is the momentum added at the source and defined by 

Mo .pU~do (A19) 
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II. The Axisymmetric Jet 

The equations that govern the mean motion of an axisymmetric incom-

press1ble and isothermal turbulent flow are given by 

Continuity: 

lL (rV) + 1.2!! + l!! = 0 r ar r ae ax 

r-momentum: 

- 1 L (vw) - .L (Uv') + l r ae ax r 

ftmomentum: 

~ _ wv = _ llll + v (v2W _ !L + L a v) _ 1 L w2 
at r p rae 2 2 a e . rae r r 

-a (~ a (-) wv - - wv,- - wu - 2 -ar ax r 

x-momentum: 

~ == _ l!e. + v 1l2u _ a~ _ 1 L (ruv) _ 1.L (iiW) 
at p ax ax r ar r ae 

where 

(A20) 

(A2l) 

(A22) 

(A23) 

(A24) 

(A25) 

For the round turbulent jet with no swirl the symmetry requires that the 

azimuthal component of the mean veloclty Wand the shear stress uw and wv 
are zeros and all derivatives with respect to the azimuthal coordinate <I> 

are identically zero. Hence the system of equations (A20)-(A23) for 

steady motion (~t = 0) becomes 
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1..L (rV) + l!! = 0 r- ar ax (A26) 

v21 + ~ = - 12.i!. + (,iv _ L) _ Ii- (rv2) _ i- uv + w
2 

(A27) ar ax p ar v r2 r ar ax r 

2" vlY. + ~ = _ 1 ~ + \72U _ ~ _ I L (ruv) ar ax p ax v ax r or (A28) -

Using the same velocity and length scales as in the two dimensional 

case replacing r by y. the terms in the r-mornenturn equation (A27) will be 

approximated as follows: 

-auy -ax- + -r-

(A29) 

Again, if the second order terms are ignored, i.e. terms of order 
2 2 Urn! (1) or (!){Mw) and when Rt = ---is sufficiently large enough, all that L L UL v 

m 
is left in the r-equation is, 

_ lie. + lL (rv2) + w
2 = 0 

p ar r ar r (A30) 

How integrate equation (A29) from s~me reference r to ~. 

p ~ -p fOCt 1 a "'"'2 OCtf 7 
- - :: - - (rv )dr - - dr p r ar r 

r. r 
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The first term on the right can be integrated by parts so that 

Pco -P' ""'2 r= "1-w2 
- - = - v + J dr p r (A31) 

o 

Differentiating equation (A31) with respect to x with Pco = const we 

have, 

(A32) 

W1th equation (A3l) the pressure can be eliminated from equation (A28) 

and the mean momentum equation becomes; 
co 2 2 

~ + ~ = - L (j_v2) _ 1 L (ruv) - L f v -w dr. +V72U (A33) ax 'Oy ax r ar ax r -
r 

Once again if we apply the order of magnitude analysis to the terms 

in equation (A23) and retain up to the second order terms and neglecting 

viscous tenns the momentum equation becomes, 
co ""'22" 

U~~ + 'J~ = - ~x (u2_~) - ~ ;r (ruv) - k f v ;w dr (A34) 
r 

However as it will be seen later that the contribution of,the first 

and last terms on the right side of equation (A33) to the mean momentum 

is insignificant and for most practical problems the momentum equation 

reduces to 

U aU + vaU = - 1 L (UV) ax 'Or r ar (A35) 

The Momentum Integral Constraint 

Mul~iplying equation (A33) by r and integrate across the jet (from a 
to co) making use of the continuity equation (A26) we have, 
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J
OO. - - JOO 00 00 "2"2 tK (U2 + u2_v2] rdr + ~r (UV)dr + J ~x f v ~w dr rdr 

o 0 0 r 

o 

(i) 

.L (rUV}dr = 0 ar 
(iv) 

(; i) (;; i) 

The terms (ii) and (iv) integrate to zero and term (iii) can be 

integrated by parts so that; 
2 00 ~2 00 00 2 22 

(iii) =!- f v ;w I -J. !- (v ;w ) dr 
roo 

002~· 

= - J v iW rdr 
o 

Then the momentum integral becomes; 
00 

d ( 2 2" v2 2 ax j [U + U - 2w] rdr = 0 
o 

or at any cross section downstream we must have, 
00. 22 

2~ f [U2 +~ - v 2w J rdr = Mo/p 
o 

as a requirement for conservation of momentum where 

u~~ 
Mo = P1I' ~ 

Uo is the jet exist velocity and do is the jet exit diameter. 

(A36) 

(A37) 

(A38) 

(A39) 

(A40) 
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APPENDIX B 

Analytical Solutions 

An analytical solution for the non-linear set of ordinary differential 

equations that result from the similarity fonnulation in the applications 

of the (k-e)- and stress-models (Chapter 3 and 4) is not feasible at the 

present time. 

Ho~ver in the similarity region the eddy viscosity (vt tV k2/e:) is 

constant,across the flow except at the edge of the shear layer (Tennekes 

and Lumley (1972»'. 

The calculated ratio (k2/e:) is in support of the above statement as it 

can be seen from figures (3.8)and (3.14). Based on this fact and if we 

neglect the second order terms in the momentum equation (3.35) we can write; 
n 

a (i + 1) [~ + 1 f I f i f d ] + 1 r (C K2/ .) i f I i I ~ 0 , T n. n n --:p. ~ En ... 
1 n o 

where the eddy viscosity hypothesis is given by, 

and the momentum integral constraint can be expressed as follows: 

The parameter al (the similarity constant) can be 

eliminated if we let ~ = ~ln. 

(B1) 

(B2) 

(83) 

In the above notation i=o correspond to the plane jet and ;=1 for 

the axisyr.wnetric case.. Uow by taking C~ K2/ E as constant equation (B1) 

can be integrated directly and a close form solution can be obtained for 

both plane and axisymmetric turbulent jet. 
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I. The Plane Jet 

In this case (i=o) the momentum equations becomes 
~ .. 

t (f2+f f fd~) +[(C~K2/E)f'J' = 0 
o 

and the momentum integral is; 

where 

~ U2 d a 

f f2dE; = --.2.... (...2..l.) 
2U2 t 

o m 

(B4) 

(B5a) 

(B5b) 

Now if we assume that the centerline velocity is governed by the following 

decay law: 

where C is an empirical constant. Then the momentum integral becomes; 

Let 45 define 
E; 

G(~) = f f(~)dE; 
o 

or 

G' (E;) = feE;) 

with the following boundary conditions; 

"G(O) = 0 

GI(o) = 1.0 

Integrating the momentum equation once leads to; 

(B8) 

(B9) 

(B10) 

(Bl1) 

(B12 ) 
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where the constant of integration is zero in this case. Based on the 

assumption that K2/E remains constant across the jet and making use of 

equation (B9) we can write equation (B12) as, 

1 II 
--;..,..- GG + G = 0 
2C K2/ E l.t • 

(B13) 

By integrating equation (B13) twice and making use of the condition 

(Bl0) and (Bl1) we obtain; 

where 

finally, the velocity profile is given by; 

f(~) :; _...;:.1 __ 
cosh2(~/a) 

Now in order to determine a we make use of the momentum integral 

(814) 

(B15) 

( B16) 

constraints. Substituting (B16) into (B7) and integrating the resulting 

equation leads to 

or 

3 1 
a:; 42 

C 

co 

.=-:..:..;~~ 1= 2~2 (817) 
o 

Where the constant C is defined byequatiorr"(B6). The value of C 

can be obtained from experimental data. For example, Gutmark and Wygnanski 

(1976) data suggests that C ~ 2.306. Hence the solution for the plane jet 

is given by; 
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U _ 1 
Um - COSh2(~/a.) (818) 

(819) 

r :If 1 2 [4~ - a. sinh (2~/ a.) ] 
m 4 cosh (~/a.) 

(820) 

II. The Axisymmetric Jet (i=l) 

For the round jet the momentum equation becomes; 

(821) 

where 

o 
and the momentum integral is given by; 

(822) 

if the centerline mean velocity decays like; 
• U d 

U =rC-LQ. m x (823) 

where C is an empirical constant and t is given by; 

(824) 

then equation (822) becomes 
CD 

J ~~d~ = ~ 
8C 

(825) 
o 

Integrating equation (821) once gives 

(826) 
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where the constant of integration is zero. 

Similarity as in the two-dimensional case if we let C~K2/E = vt 
be a constant across the jet, then equation (B26) is satisfied if; 

1 
f(~) = 1 2 2 

(1+ ;or- ~ ) 
o'Vt 

(B27) 

If we impose the momentum integral constraint on the solution (B27) we 

can evaluatt the width parameter (~) in terms of the empirical constant 
o'Vt 

C. That is; 

-= 3 
"t 32C2 (B28) 

Hence the exact solution for the round jet is given by; 

(B29) 

(B30) 

(B31) 

where C is an empirical constant (see Table 3.2) 
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APPENDIX C 

Initial Profiles 

The eddy viscosity solution (Appendix B) ~redicts the velocity and, 

in turn, the shear stress profile for self-preserving turbulent jets quite 

well across most of the flow except near the outer edge where the profiles 

are a little overestimated. However, these profiles will provide an 

excellent first guess to start the similarity solution in Chapter 3 for 

the k-c model and Reynolds stress solution in Chapter 4. 

The velocity and shear stress are given by the exact expressions 

'818),(819), (829) and (830) and they are reviewed in Table (Cl). The 

empirical constant C associated with these profiles for the plane and 

round jet can be taken from the experimental data. (See Table 3.3.) 

For the present calculation an average value of C is given in Table 

(C2) along with some of the flow characteristics for the plane and the 

round jet. 

Kinetic Energy Estimate 

It has been observed from the 'experimental data of the plane and 

round jets (i.e. experiments listed in Table 3.2) that at some distance 

outward from the symmetry axis of the jet until the outer edge of the 

flow we have the following balance in the energy budget. 

Production ~ dissipation 

Convection transport ~ diffusion transport 

A convenient measure of this distance cited above is the value of 

~ where the shear stress is a maximum which is defined here as ~ss (See 

Figure Cl and C2). Hence for ~ ~ ~ss by the first equality given above 

we have 

(Cl) 
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where E is the dissipation rate of energy and g4 is the shear stress. 

By the eddy viscosity hypotheses it follows that the kinetic energy 

of turbulence is given by 

(C2) 

Figure Cl shows the eddy viscosity solution for C = 2.4 and the 

estimated kinetic energy profile. For ~ ~ ~ss (the dotted line) it is 

assumed that the k-profiles decrease as ~~. which is based on the experi-

mental data. On the other hand Figure (C2) shows the same results as 

above but for the round jet and the k-profile is observed to be increasing 

as ~~ based on the round jet data. 



www.manaraa.com

146 

Profile Plane Jet Round Jet 

f . , 1 
COSh2(j C2~) 01 C2~2)2 

94 2- tanh(! C2~)/f ~ 
16C2 3 2{1J. C2~2)3 3 

I 2 I _12 c2 i f - 8~ tanh(j. C2~)/f 
3 (14 C2~2)3 3 

K2 9 3 Cpr 
64c4 32C2 

Table C1. Summary of the Eddy Viscosity Solution. 

Flow Constant Plane Jet Round Jet 

C 2.4 6.0 

(UV/Um)max .025 .0186 

~1/2 . 115 .093 

tss .085 .065 

vt It .09 K2/E .00423 .0026 

Table C2. Flow Characteristic For the Eddy Viscosity Solution. 
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Figure Cl. Eddy Viscosity Solution for Self-preserving 
Two-dimensional Jet. 
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Figure C2. Eddy Viscosity Solution for Self-preserving 
Axisymmetric Jet. 
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APPENDIX 0 

Reynolds Stress Equations in Cartesian Coordinate Sjptems 

The equations for the Reynolds stress components for a general 

turbulent free shear flow can be obtained from equation {2.67}. For 

steady state motion equation (2.67) can be written as follows; 

aufuj 0 2 
Uk a • P •• + a J i ' k - C,e:b .. + «p •• - ~3 tS iJ" xk lJ xk J lJ lJ 

(1) (ii) (iii) (iv) (v) (vi) 

(01) 

The convective tenn (i), production (ii), return to isotropy (iv) 

and dissipation (vi) are straightfo'rward and can be easily written in 

component fon.. The diffusion transport (iii) can be evaluated from the 

relations (2.69) and (2.70). The rapid tenn (v) can be obtained from the 

fourth order tensor which is given by equation (2.71). Now let us consider 

a two dimensional flow in which Xl' x2' x3 correspond to the cartesian 

coordinates x, y, and z (Figure Al) and the respective velocity components 

Ul , U2, U3 and u1,u2,u3 correspond to U, V, W, and u.v.w. We assume that 

there is no mean motion in the z-direction and all derivatives with respect 

to z' are zero. Further the shear stresses U; = wu and vw = wv are zero. 

Based on the above assumption the dynamic equations for Reynolds stress 

components become 

x-component: 
-Z '7 
~ + ~ = -2(7 lY. + iJV .!Y.) + .L J oX ay oX oy ax 111 

2e: 
+ ~1l - 3 (02) 
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y-component: 

ua7 + va7 = -2(iJv !:!.. + 7 21) = .L J + ~y J222 - Cl e(7 - ~) ax ay ax ay ax 221 a q2 ~ 

(03) 

z-component: 

:"1' ~ 2" 
flaw + Vaw = a J + a J C (w 1) 2£ (04) . vax ay ax 331 ay 332 - 1 e: q2 - 3 + 4~33 - 3 

Shear Stress: 

uv 
- C1e ::2 + <1>12 

q 
(05) 

Tha transport and rapid terms in the above system of equations involve a 

lot of terms. However, some of them are negligibly small compared to the 

leading terms and they will be dropped out. Hence before we evaluate 

these terms let us take a look at the order of magnitude of the various 

terms in the above equations. However, since the terms in the proceeding 

equations are similar it will be sufficient to examine equation (05) and 

the same analysis will be applicable to the rest of the equations. 

Using the same scales as in Appendix A we may scale equation (05) as 

follows., 

Ua~ + vaw = _ ""1 aV _ v aU _ uv 2J.. - "1 ~ 
ax ay ax U ax ay ay 

1, = r t r t r 1 
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aJ12l + 

aJ122 uv 
+ 4112 + - C €= ax ay 1 q2 

u t u u 1] u;r U; Urn 

In the above scaling the diffusive transport and rapid term has been 

represented by their largest term. From previous analysis we have, 

(u)2 R. U;; I\, r « 1, 

(06) 

Hence the first term in the production is negligibly small so is the 

first diffusion term. The rest of the terms are small compared to unity 

but they are of the same order as the left hand side of the equation. 

Hence, we are keeping these terms for later analysis in Chapter 4 and 5. 

Based on the above analysis and the assumption made earlier we will eval-

uate the rapid and transport terms. 

8!pid Tems 

The mean velocity gradients for the two-dimensional flow is given by 

i!! aU -ax ay o 

Up,q == 0 aV 
ay (07) o 

0 0 o 

Hence, from equation (2.71) and (2.72) the rapid terms can be evaluated. 

Based on our assumption above and with equation (07) these terms become 

[ 2 (-:1 1 -:2 aU 1 '11 & ~ - C - - -)] q - + -(l+2c) 
.lV qz 3 ax 3 

aU [1 u2 1 ) uv - + .. - + c(- .. -ay 30 Q2 3 

7 
+ c (~.. 1)] III 

q~ '3 ay (D8a) 



www.manaraa.com

152 

~22 :::: [ - to- + e(l. 1) + e(V2 - 1)] q2 2.!!. - 1(T+5e) uv ~ 'q! qz 3 ax 3 ay 

"""2" 
+ [1 + e(L • 1)] l aV 

Jtf q2 3 ay (Dab) 

[ 1 (7 1 ) (7- 1] -"! au au '33:::: - E" + e - - '3 + e == + -) q - + e uv -qz q2 3 ax ay 

2" -Z 
+ [1 + e(v _ 1) + e(L _ 1)] III 

JO" q2' '3 Q! 3 ay 
(Dae) 

~2 • [to- + (l-c) i! -l (l+8c.) l + c] l ;U 
q' q2 Y 

(08d) 

Transport Tenns 

The transport terms are given by (see Section 2.12) 

2 ':! 1 l Cl -2. 
Jfjk • 3(2-b)C, ~ Gijk - (2-9b/4}C1+5 € 3(2-b)C, Gk °ij 

(09) 

where Gfjk and Gi are given by equation {2.67} and (2.70). 

terms in the functions Gijk and Gi are 

The non-zero 

-:! ~--
G ~ + 2uv ~ + 2 v2 l!!! 1 :::: uv ay ay ay 

G_ :::: "7 a? + tiN auv + 2 v2 a7 -z ay ay ay 

G == .., '0-;1 + 2 uv ~ 112 ay ay 
-Z 

G- ==37.!L -z22 ay 

7a7 G332 == v -:;y-

(010a) 

(OlOb) 

(010e) 

{OlOe} 

(OlOf) 
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- -- :-"2 G 1: y2 !!!! + 2 3UY + uv !'L 
122 3y Y 3y 3y 

If we substitute (010) into (09) the diffusion terms become 

where 

2" -2 -2 -2 
J = C ~ [(C +1) y2 ~ + 3C y2 ~ + C v2 ~ 112 0 e 2 oy 2 3y 2 oy 

+ 2(C +1) uv oUY ] 2 oy 

- -2 -;;-2 
J = C n2 [3(C +1) y2 lL + (C ..1) yt:. !L 222 0 ~ 2 5 oy 2 5 oy e 

-;;-2 -
+ (C .1.) yt:. 2!...- + 2(C .1.) uv ~ 2 5 oy 2 5 oy 

- 22 -2 -
J332 = Co t [(C +1) v oW + 3C y2 l!L + 2 uv OUy] 

€ 
2 3Y 2 3y oy 

- - 2" 2" [8 -:2 oW + 4 - Oy2 3 - ou 2 1 - aw J122 = Co £ '5 y ay 5" uy ay - '5 Uy ay - '5 uy W-
e 

C 1: 1 
o 3(2-b)C1 

2(Cl -2) 
C2 = 26+Cl (8-9b) 

(OlOg) 

(Olla) 

(011 b) 

(011 c) 

(Ol1d) 

(012) 

(013) . 

Finally the dynamic equations for the Reynolds stress components in 

two-dimensional turbulent flow become, 
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2" """2 - 2 2" 
U !!L + v l!L = - 2u2 l!L - 2uv l!!. + .L [C .9.:. { 2(C +1) ~ ax ay ax ay ay 0 € Y 2 ay 

--:-2 -2 -
+ 3C v2:!L + C y2 ~ + 2(C +1) uv ~}] 2 ay 0 ay 2 ay 

2" -
+ 4[1.. - c(~ _ 1)] q2 aU + 4{1+26) uv l!! 

30 qz 3 ax 3 ay 

+ 4[- L + C (u
2 

_ 1) + c (i _ 1)] q 2 2J.. - C € (l _ 1) _ k 
30 q2 3 Cj! 3 a y 1 q 2 3 3 

-------------------
(D14a) 

:z ~ - 2" 2 2 
U lL + V .2L = - 2y2 .rL.L (C s.:::. {3(C ;4)y2 !!... + (C .l)y2 2lL. ax ay ay 3y 0 € 2 5 3y 2 3 3Y 

- 2" - "2 
+ (c 2)y2 2!L + 2(C ..f.)uv ~ ] + 4[- L + c(~ _ 1) 25 ay 2 5 3y 30 q2 3 

~ ~ 2 -2 -2 -2 u l!L + V aw =.L [C s.:::. {( C +1) 2 ~ + 3C y2 lL + C y2 2.!L ax ay ay 0 € 2 y ay 2 ay 2 ay 

+ 2uv auv}] + 4[- L + c(~ - 1) + c(-:1 - 1) ]q2 au 
ay 30 q2 3 q2 ax 

+ 4c iN 1!! + 4[- L + c(v2 - 1) + c(Z -13)]q2 2! . ay 30 q2 3 q2 ay 

(D14b) 

(D14c) 
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. U aw + V auv = _ uv 2.!L - ..., 2.!L + .L [C l {~ u2 auv 
ax ay ax ay 'Oy 0 € 5 ay 

2 . ~ ~ 
+ 45 uv .rL - 35 uv !L - 1 uv aw }] ay ay 5 ay 

1 v2 1 ~"2 au 
+ 2[10 + (l-c) q2 - 3" (1+8C).~ + c]q 'Oy 

. C uv - 1e: = 
q2 

(014e) 

Where the underlined terms are of the 2nd order and Co and C2 are given 

by (D12) and. (013). 



www.manaraa.com

156 

APPENDIX E 

Reynolds Stress Equations in CYlindrical Coordinate System 

For the axisymmetric turbulent flow let us write equation (2.67) 

in curvlinear tensor fonn. Setting tr = 0 the Reynolds stress equation 

can be transformed to covarient fotm as follows. 

(El) 

where 

k -r- I< P .. c-u uj U. k - U u1 U. k lJ 1 ~ J, 
(E2) 

(E4) 

(E5) 

.~~ = 2(I~9 + I~g) q2 U lJ lJ Jl p,q (E6) 

j ij f . and 0;, 9ij a~~ 9 can be obtained by the following trans ormatlon 

relations. 

Let (xl, x2, x3) correspond to the cylindrical coordinates (r, a, z) 

and the respective mean and turbulent velocity components are (U" U2, U3) 

and (u1' u2' u3) which correspond to (U, V, W) and(u, v, w), ;1, ~2 and ~3 
correspond to the cartesian coordinate (x, y, z) and the respective 
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velocity components are (U(1), U(2), U(3)) and (u(l), u(2), u(3}). Then 

we have the following transformation relations. 

x' = [(~1)2 + (~2)2J1/2 

x2 = tan-' ~2/~1 

x3 = ~3 
From tensor algebra we have, 

= 3s:-
k as:- k 

g .. ~~ , 
lJ ax' axJ 

iJ.JO 

9ij = 0, T 

i 1 ah i r =--
ij hi axj , r~ 0 = 0, ifjfk 

'J 

;j 
9· 0 9 =, lJ 

o 0 ;J.j 
o~ = T 

1 1 ;=j 

_ h2 h2 92 - h2 
911 - , ; 922 = . 2; 33 - 3 

h = 1 h - xl h -, 1 '2- '3-

u = h, u(l) , v = h2 u(2} , w = h3 u(3) 

1 u 2 v 3 _ w u =- u =- u --h, , h2 ' h3 

(E7) 
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Now let us evaluate equation (E4) while observing the tensors 

differentiation. Hence, 

Or in component fonn we have 

~~-~ "'2-2 
G1
1l • 3 u~ 2.!L + !!Y. ..2!L + 3 uw ~ - 6 !!Y. ar r ae az r 

-;r 2~ - - 22 -
G1 = u' ar v +!!Y..L r2v2 + - ar v + 2r Uv ~ . 22 ar r ae uw az ar 

+ 2 7 aruv + 2 rvw aruv - 2r v2 - 2r uv2 
ae az 

~2 -'"2 "'2 ---Gl = U ~ aw +!!! 1!L + - aw + 2 uw awu + 2 vw awu 
33 ar r ae uw az ar r ae 

+ 2 w2 auw _ f. vw2 
az r . 

1 ---;:; a- - a-w a w - au2 vw au2 ~ au2 
G13 :& u~ a~w + ~ ~e + uw a~ + uw ar- + r ae + w az 

+ u 2 auw + uv auw + uw auw _ 4 liV vw 
ar r ae az r 

- 2" 2" -- -2 . 
+ ~ lL + uw !!... + f. U 2 v2 _ f. v2 + f. uv2 

r ae az r r r 

(E8) 

(E9a) 

(E9b) 

(E9c) 

(E9d) 

(Ege) 
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2" 2-2 -- -

G3
11 = uw ~ + 1 vw l!L + w2 l!L + 2 2 auw + 2 1 Uv ~ ar r ae az u ar r ae 

-auw 4--+ 2uw - - - uv vw az r 

2 2 - 22" - 2'"2 -
G3

22 
- ar v +.Y!! ar v + w2 ar v + 2r uv ~ = uw ar r ae az or 

"'"2-2-2 -
+ uv 1L + Y!! !L + w2 .2:L + ruv .L .'!!. or r ae az or r 

(E9f) 

(E9g) 

(E9h) 

(E9i) 

Consider now only axisymnetric turbulent shear flow without swirl 

so that all shear stresses but (uw = wu) are zero. Further ~e = O. The 

equations in (E9) simplify to; 

G1 = 3 ~ au
2 

11 ar (E10a) 

'2 s! .7L rfl- 2r 7 -l2 or 

(E10b) 

(E10c) 

(E10d) 

(E10e) 

(E10f) 
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(E10g) 

(E10h) 

(E10i) 

Diffusion Terms 

Jk :: a Jk k m m k m k 
1j k --r. .. + r k J.. - r. k J . - r· k J. , axK lJ m lJ 1 mJ J 1m (Ell) 

If we substitute for the r's we get 

Jk . 
k a 11 1 . 1 2 2 

J l1 ,k :: 7 + r J'l-' r J12 ( E12a) 

k 
k 3J22 1 1 2 1 2 

J22 k :: :J< + r J22 - r J22 + 2r J12 , ax ( E12b) 

(E12c) 

(E12d) 

From (E3) and (E10) the J's can be evaluated and the results are; 

~ '"2 
J 111 :: C 9:. (3(C 4) "l 21L + (C .1.) {'"2 av o e 2 5 ar 2 5 u ar 

(E13a) 

• 

(E13b) 
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1 ":2- -2 --:2 
J22 = -c ~ [r2 C 3u2 ~ + (C2+1) {r2 u2 ~ o e 0 ar ar 

'2 -2 - - 2 
Jl • -c .9:. [(C +1) (u2 2!... + 2uw ~) + C 3u2 ~ur 33 0 e 2 or ar 2 a 

~ 2" ~-2 
+ C {u'- 2.L + f. (u2~'-_y2 )}] 2 ar r v 

-:2 -"- 2 '2 --
Jl = -C .9:. [2u2 auw + uw ~ ... 1 {uw 2lL + 2u2 ~ 
13 0 e ar ar 5 ar ar 

2 ;Z - a7 2 2" - , - a~ 2" aU; J23 = -C .::1.- [uw - + - Y uw - - {uw - + 2u -o e or r 5 or or 

Substituting (E13) into (E12) the diffus"ion terms becomes, 

'2 --;rr-t -2 
Jl'"l = 1 L [-r C .9:. {3(e ..4) u'- 2lL + (C .l.)[u2 !'L. r ar 0 e 2 5 ar 2 5 ar 

'2 -2 - '2 --;rr 2 
+ £. C .9:. {_ 1 u2 ~ +! 2!'L. _ 1 u'- aw 

rOe 5 ar 5 u ar 5 ar 

~:2 --2 
+ C u,-i)W + 2 C Uw auw + 2{e +1) 1 (u2y2_y2 )}] 

2 ar 2 ar 2 r 

2" --.J2 -2 -z 
_ 2 e g.:. {- 1 u2 ~ + 4 u2 !L _ 1 u2 2.!'L 

roe: 5 ar 5 ar 5 ar 
- --2 _ f. uw auw + 8 1 (u 2y2_y2 )} 

5 ar 5 r . 

(E13c) 

(E13d) 

(E13e) 

(E13f) 

(E14a) 

(E14b) 
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1 1 2" --,or 2 -2 
J = _1- [-r C B- {3 C u~ ~ + C 2 av 33,1 r or 0 € 2 ar 2 u ar-

--2 
+ C2 ~ (u2v2_v2 )}] 

J 1 = 11- [-r C i {4 uw au
2 

- .l- -uw av
2 

13,1 rar Oe: 5 ar :) ar 

"2 - - -3 - aw 8 2 auw 2 1 - 2 
- "P" uw· - + - U - - - - uw v }] :) ar 5 ar 5 r 

2" 2" 2" 2" 1 n- 1 - au 4 - av 3 - aw + - C .:I.- {- -S uw - + -5 uw - - -S uw -rOe: ar ar ar 

2 """2 auw 8 1 - 2" - ~ u - + - - uw v } :) ar 5 r 

The Rapid Terms 

The mean velocity graients U q transform to: p, 
au 

U = -2 - rm U p,q axq pq m 

the non zero values of U . are given by: p,q 

aU 
ar 

o 

aW ar 

o 

rU 

o 

o 

aW 
az 

Hence with (E16) and (ES) the rapid terms can be evaluated and the 

resu lts are: 

pq 1 ]2 aU [1 2 U ~ll = 4[15 - cb11 q ar + 4 - 30 + cb11 + cb22 ]q r 
4 - aW 1 ]2 aw - 3 (l+Sc) uw ar + 4[- 30 + cb" + cb22 q az 

(E14c) 

(E14d) 

(E1S) 

(E16) 

(E17a) 
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pq _ [ 1 ]2 aU [1 ]2 U '22 - 4 - 30 + cb33 + cb22 q ar + 4 15 - cb22 q r 

- aw [1 2 aW +4c uw ar + 4 - 30 + cb33 + cb22 ]q az 
pq = [ 1 ]2 aU 1 '33 4 - 30 + cb11 + cb33 q ar + 4[- 30 + cb33 

]2 U 4 - aw 2 2 aw + cb22 q r + j(l+2c) uw ar + 4[30 - Cb33 ]q az 
2" -~ 

.pq = - 2c Uw J! -2c uw !! + [_1 + (1-c) .U + c]q2 aW 
lZ r r 10 q2. ar 

- aW c uwaz 

Final Form of the Reynolds Stress Equations 

(E17b) 

(E17c) 

( E17e) 

Now let us go back to the original notations as indicated in chapter 1. 

Hence (U, u) are the axial components (V,v) the radial component and (W,w) 

are a component of the mean and turbulence velocities respectively. Then 

the final fo~ of the stress equations is given by; 

x-cO!!!Ponent 

""22 - 2" 2 
~ + V~ = 2 uv 2J! - 2 u2 2J! + lL [r C ~ {3 v2 2L ax ar ar ax r ar 0 € ar 

- 2" - 2 -
+ C v2 lL + (C +1) v2 2.!L + 2(C +1) iN l!!Y.. 2 ar 2 ar 2 ar 

----- --------------
4 - au 2 2" aU 2 + '3 (1+2c) uv at=' + 4[30 - cbn]q ax - '3 E (ElBa) 
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r-component 

- 2 -"2 -
+ (C .1.)(y2 aw + y2 ~ + 2 Uv aUy 

2 3 ar ar ar 

8 ~"2"2 y2 1 
- - (y w -w )}- C e: (= - 3) + Sr 1 q2 

1 ":2 aV 1 2 v + 4[15 - eb22]q ar + 4[- 30 + eb22 + eb33]q r 
4( - aU 1 2 au 2 - -3 1 +5c) Uy - + 4[- - + eb + eb2 ]q - - - e: ar 30 11 2 ax 3 

e-c0mp9nent (E18b) 

"'"! '2 - 2-2 
u..g!... + Vaw = _ 2 w2 ! + 1 L [r C 3.... {3C2 y2 ~yr ax ar r r ar 0 e: a 

-"2 - 2 
+ (C +1 )y2 ~ + C y2..2!L + 2C uv ~ 2 ar 2 ar 2 ar 

- 2" - 2 -+ 4 y2 aw _ 1 y2 l!L _ f. uv .ill!! 
5 ar 5 ar S ar 

-------------" ---------

- au 1 ]2 aU 2 + 4 euy ar + 4[- 30 + eb11 + eb33 q ax - '3 (E18e) 
-----.----------
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·Shear Stress 

- - - "2"2 
~ + VoUY = -uv r!.. _ y2 .2!L _ uv 2J! + 1 L [r C .9:.. {i LiV E.!L ax ar ar ar ax r ar 0 € 5 ar 

, - aw2 3 - au 2 8"2 auv 2 1 -"2 ] - -5 UY - - - UY - + - Y - - - - UY W } ar 5 ar 5 ar 5 r 

1 "2 
- - C £ rOe: 

"2 "2 2" 1 --- oY 4 - aw 3 - au - - uy - + - uy - - - wy -5 or 5 or 5 or 

- - 2" -
- 2 y2 ~ + §. uv ~ _ C e:~_Y - 2 cuv 2! + 4 uv '1 

5 ar 5 r . 1 q2 ___ :r ___ r _ 

+ 2[L + (l-c) 7 _ 1 (1+8c) l + c]q2 au - 2 ouv .!Y. 
10 q2 3 q2 or ___ :x_ 

- 4 cuv .J! x 
(E18d) 

Where the underlined terms are of 2nd order based on order of magnitude 

analysis similar to that of Appendix D. 

u2 1 
b1l = ;Z - 3" 

~1 
b22 = = - 3" q2 

w2 1 
b33 = = .. 3" q2 

(E19a) 

(E19b) 

( E19c) 
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APPENDIX F 

Numerical Scheme 

The following numerical scheme solves any set of finite difference e 

equations simultaneously. This simple algorithm consists of the recursion 

relations f4, f8, and f9. In order to up-date Ej and Fj in the tridiagonal-

ization, matrix inversion is required, at every node point j. Then by back 

substitution (equation F4) one can solve for the unknowns at the grid point j. 

Consider a set of difference equations that results from a coupled system 

of differential equations, which can be, in general, written as follows. 

1 1 a1lx
j
_1 

1 + b11 Xj 
1 

+ ~llXj+l 
2 + a12x
j

_l 
2 + b12xj + n + Clnxj+l = dl 

1 a2lxj _1 
1 + b21 xj + t21xJ+l 2 + a22x

j
_l 

2 + b22xj + .... n + C2nxj +1 = d2 

1 1 +. 1 2 2 n = dn (Fl) 
anlxj _1 + bn1xj cnl xj +1 + a 2x, 1 + b 2x, + .•. , + cnnxj+1 n J- n J 

where the x"s are the unknown values of the variables at the"corresponding 

grid points (i.e., j-l, j and j+l in Figure 3.2), the a.ls, bls and CiS 

are the constant coefficients of the variables in questions and dis stand 

for the source terms in the system of equations. The above equation (El) 

can be written in the following matrix form. 

all a12····a1n 
1 bl1 b22 ····bln 

1 x, 1 x· J- J 

a21 a22····a2n 
v 2 + b2l b22 ·•· .b2n x~ 
l~' 1 J- J . . . . . 
'n . 

~~ anl an2 ····ann x. 1 bnl bn2 ····bnn J- J 

cll c12· ••• cl n 1 xj +1 d1 

+ c~l c22 ····c2n 
2 d2 

x '+1 = J . · . · n: · . 
d.n 

cnl c~2····cnn xj +1 

(F2) 
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Solution of the Set of Equations 

Let us write the above system (F2) for the jth grid point as follows; 

AJ.Xj 1 + B.X. + C,X'+l = O. • J J J J J (F3) 

where Aj , Bj and Cj are the (nxn) coefficients matrices and OJ is the 

constant coltllln vector in the above' system where all are evaluated at the 

jth point.. The XI s stand for the unknowns at the corresponding grid points 

j*l, j and j+l. Now let us define, 

X. = F. - E,X'+l J J J J 
(F4) 

where the matrices Fj and Ej will be determined later. If we replace j by 

j-l' in equation (F4) and SUbstitute into equation (F3) we get, 

Aj (F. 1 - E. 1 X .) + B. X. + C. X . + 1 = OJ' J- J- J J J J J (F5) 

or by rearranging equation (F5) becomes 

(B. - A.E. 1) X. = O. - A.F. 1 - CJ'XJ'+l J J J- J J J J- (F6) 

If we multiply equation (E6) by the inverse of the matrix (Bj - AjEj _1) 

the following equation for Xj will result 

Now if we compare equation (F7) with (F4) we find that; 

(fa) . 

and 

F. = (B. - A. E. 1) -1 (0. - A. F. 1) (F9) 
J J J J- J J J-

Equation (F9) can be evaluated only for j=2, ... J-l. Hence for j=l 

(i.e. ;=0) and j=J (~=~max) we evaluate the system of equation' (F2) using 
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the appropriate boundary conditions. 

i) Inner Boundary (;=0) 

At the inner boundary we require that 

Al = 0 

Hence it follows from equation (F3) that 

and from equation (Fa) and (F9) we have, 

El = B1 -1 Cl 

-1 
Fl = Bl 01 

ii) Outer Boundary (;=~max) 

At the outer boundary we require that 

C = 0 J 

then from (f3) we have, 

AJXJ_1 + BJXJ = OJ 

and equations (Fa) and (F9) become 

EJ = 0 

FJ = (BJ - AJEJ_1)-1(OJ - AJFJ_1) 

(FlO) 

(Fl1 ) 

(F12 ) 

( F13) 

(F14 ) 

(F15 ) 

(F16) 

(F17) 
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