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CHAPTER I

Introduction

1.1 Background

Jet engines, wakes behind airplanes and submarines, mixing layers,
water disposal in rivers, chimney plumes and all kinds of motion in the
atmosphere are a few examples of turbulent free shear flows which the
engineers and the meteorologists as well, wish to predict. There are,
in fact, many other flows of practical importance that need not to be
boundary free as in the above flows. Examples of these flows are channel,
pipe, and boundary layer flows. However, the process of free turbulent
mixing is prominent in all these flows. Hence the theory of free shear
flows, in general, applies to these flows as well.

The above classical flows have Tong been favorites for turbulence
- investigators because of the easy manner in which they can be generated
in the laboratory. Another important characteristic of these flows, is
their tendency to become fully developed and se]prreserving'(at least in
principle) after a certain development region. This ehables theoretical
investigators to approximate the eduations of motion based on physical
grounds,such as order of magnitude analysis.

At the turn of the century the advances in the study of turbulent-flow
problems were made primarily in the laboratory where basic insights into
the general nature of turbulent flows were developed and the behavior of
selected families of flows were studied systematically. For engineers and
meteorologists there were only a limited number of useful tools, such as
boundary layer prediction methods which salve the momentum integral equation
with a high empirical content. Turbulent flow features such as sudden

changes in boundary conditions, separation or recirculation could not be
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predicted by these early methods with any degree of reliability. Hence
empirical work remained an essential ingredient in many engineering analysis.

Halfway into this century the computer began to have a major impact on
engineering éomputations and the development of a theoretical model capable
of predicting turbulent flows with a fair degree of accuracy began to
attract many researchers in this field.

The exact equations that»govern turbulent flows are well known; they
are the Navier-Stokes equations. These equations, which are accepted as the
fundamental basis for turbulent flow problems, are non-linear and strongly
coupled; hence, an analytical approach leading to closed form soluytions is
not possible. Procedures exist to solve these equations numerically. How-
ever, the energy-dissipating eddies are so small that the computational
mesh required must be so fine that realistic calculations cannot be carried
out with present day computer hardware. Therefore it is customary to con-
sider statistical properties of turbulence, which is often sufficient in
providing engineers with the required information. This approach, however,
~ Teads to an infinite number of correlation equations that govern the turbul-
ence properties. |

- A practical way to close the system of equations is to employ a turbul-
ent model which approximates higher order correlations (moments) in terms of
Tower order moments that can be calculated. This approximation relies heavily
on experimental data to determine the model empirical constants and functions.
Therefore a reliable set of experimental data must be provided to serve as

a basis for any theoretical prediction methods.

1.2 Theoretical Model

The turbulence models are classified either according to the number of

partial differential equations they employ for turbulent quantities or by the

order of the moment for which the transport equations are written.



The first turbulence model which has been applied to turbulent free
shear flows with some success, is Prandtl's (1925) mixing-length hypothesis.
This simple model relates the turbulent shear stress uniquely to the local
mean velocity gradient. Then the partial differential equation for the
mean flow is transformed to ordinary differential equations for which an
analytical solution can be obtained. (see i.e. Appendix B) This model,
among others of its class, often breals down in many situations when there
is more than one mechanism present, preducing, in general, more than one
length ep velocity scale.

A second order model is expected to work better in most situations
because it carries transport equations for second order quantities, so
that many of the mechanismé responsible for the production of those quan-
tities are represented accurately. Kolmogorov (1942), Prandtl (1945),
Chou (1945) and Rotta (1951) laid the foundation for second order models
of turbulence. However, analytical solutions for the resulting system of

equations could not be obtained and a numerical one was not possible at

that time. |

By the early 70's when advances in combuters and numerical methods
overcame the mathematical difficulties, séveral predictions of turbulent
free shear flows had been made with a fair degree of accuracy. Among the
reported models are the (k-¢) model proposed by Jones and Launder (1972),
(k-kz) model by Rodi and Spalding (1971) and the (k-w) model by Spalding
(1972). However, these prediction methods use model constants which were
thought to be universal, but the calculations showed that they are not.
For example, a set of constants that predict the flow for plane jets will

not do so for the round jet.



Furthermore the two equation model used the eddy viscosity concept
(e.qg. Vg v k2/e),hence they do not keep track of the dynamics of all the
second order correlations of importance. This led to the idea (Donaldson,
1971; Hanjalic and Launder, 1972b; Bradshaw, 1972) that the most promising
class of turbulence models for making numerical calculations of such complex
flows is that based on the solutioh of the approximated equations for the
Reynolds stresses E;ig'and indeed several proposals have been made (see

section 2.4).

1.3 Scope and Object

In the past decade considerable success (Lumley and Khajeh-Nouri, 1974;
Launde},\Reece and Rodi, 1975; Reyﬁo]ds, 1976 and Hanjalic and Launder 1976)
have been made in predicting shear layer, jet wakes, channel flows, and
boundary layers with reasonable degree of accuracy. - There were, however,
some unexplained differences between calculated and measured turbulent
quantities.

These discrepancies arise from the neglect of §ome correlation terms
in the governing equations, incomplete or inappropriate closure formulations
for other correlations or simply not having the optimum values for the co-
efficients in closure formulations which may be functionally correct. For
instance a set of constants in the closure formulations that gives good
results for one flow situation sometimes does not work well for another flow.
This is the case with the predictions for the two-dimensional and round jet
flows (Launder and Morse, 1979).

Although some fundamental guiding principles, i.e. invarient modeling,
have been used in formulating c?os&re relations, much is developed by ad.hoe
assumptions. With appropriately adjusted constants some of these ad hoe

closures have performed admirably well. However, one would Tike to develop



closure formulations from first principles using rational procedures. Also
it would be highly desirable that the model parameters and constants be
determined as part of the calculation, or at least, determined from certain
"key" basic experiments. Furthermore, closure formulations and the resulting
theory should not violate certain mathematical or physical principles, e.g.
conservation of mass and momentum.

Using a rational approach, Lumley. (1978) formulated a second order model
that is an orderly expansion about a homogeneous, stationary turbulence, the
large scales of which have a Gaussian distribution. In this formulation care
is taken to satisfy realizability conditions. This condition implies that
non-negative quantities are never negative and Schwarz's inequality is
satisfied. The key coefficients in this closure relation are functions of
the local turbulent Reynolds number and anisotropy.

The primaky aim of this dissertation is to consider the above closure
formulation and investigate the functional form of the model parameters based
on the available data for a homogeneous decaying axisymmetric turbulent flow.
The closed Reynolds stress and dissipation equations are transformed to curvi-
linear coordinates for the use in the axisymmetric jet calculations.

The similarity forms of the resulting system of equations for plane and
axisymmetric flow are solved numerically to determine the equilibrium behavior
of turbulent (isothermal) fully developed and self-similar jets. The results
are compared with available experimental data with the emphasis on conserva-
tion of momentum.

C. B. Baker (1980) raised the question about the validity of the axisym-
metric jet measuréments, since they failed. to conserve momentum. He analyzed
the data of Wygnanski and Fiedler (1969) for an axisymmetric self-preserving
jet and argued that the measured mean velocity profile conserves only half

of the momentum added at the source. (See also George, Seif and Baker, 1981).



On the other hand the most recently measured and calculated profiles are
fairly in good agreement with Wygnanski and Fiedler profiles when they are
normalized with their respective centerline value of the mean velocity.
Hence part of this study (chapter 5) is devoted to examination of the jet
data (plane and axisymmetric) in contrast with the results of theoretical

predictions.
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CHAPTER 2

The Reynolds Stress Closure

2.1 Equations for the Mean Flow

The equations that gcvern the mean motion of an incompressible
isothermal turbulent flow are obtained from the Navier-Stokes equations.
By decomposing the instantaneous velocity and pressure into a mean and tur-
bulent component and by taking the time average of all terms, the following
equations will result (see Tennekes and Lumley 1972).

Conservation of mass:

Ui,i =0 (2.1)

Conservation of momentum:

pl;

3 U

FolU, o= =P, + (s . - pUUD),s 2
oUsUs 5 P, (uU1’J pUsU5) s (2.2)

where the overbar denotes the time average, the overdot stands for the

partial derivative with respect to time and the subscripts after the

al,
commas denote the partial differentiation,eg.ui j© 5;1. The new
unknown puiuj in the momentum equation is the contribution of the tur-

bulent motion to the mean stress tensor. It is known as the Reynolds
stress in honor of Reynolds who first developed equation (2.2) in (1785).
The Reynolds stress pﬁ?ﬁs'has nine components and hence introduces nine
unknowns to the equation of motion; however,since it is a symmetric tensor
GIF;; =‘E;E;)‘the number of unknowns is reduced to six, three normal
and three tangential components. |

The aim of any prediction method in turbulent modeling is to solve
the momentum equation fof Ui,but because of the presence of G;E; in the

momentum equation, the system of equations in (2.1) and (2.2) do not consti-

tute a closed set. Closing this set of equations has been of major concern



for over a century. An earlier closure, which is known today as the zero
order model, was origina!]y proposed by Boussinesq in 1877. This simple
closure model assumes that the shear stress is proportional to the mean
velocity gradient. This approximation predicts the velocity and shear
stress profiles for thé self preserving turbulent jet (see Appendix C)

with a good degree of accuracy over most of the flow region, but it fails

to do so when the turbulence is in non-self-preserving state. However, with
the advances of electronic facilities researchers have tried to develop a
universal method to predict the Reynolds stress accurately. The most direct

m——

way to determine “iuj’ of course,is to solve a transport equation for all
non-zero components of the Reynolds stress. Such an equation, in fact,

does exist and it will be discussed in the following section.

2.2 The Reynolds Stress Equation

A transport equation that governs the Reynolds stress can be derived
in the following way. The eguation for the component i of the instantaneous
velocity (Ui+“i) is multiplied by uj and the equation for the j component
Uj+uj) is mu1tip11ed‘by Us. Summing of the two equations and taking the, time

average yields the desired equation for ui“j (see Hinze,1959):

— P
P U Uy H g (g Py )

i pressure strain

i
(i) = convection ii) = production (iii)

P

(iv) = diffusion

- 2 Vv ui,kuj,k (2.3)

(v) = dissipation



As it can be seen from equation (2.3),further unknowns, such as the triple
correlation and pressure velocity correlations, have been introduced.
This, of course, adds to the complexity of the situation. Transport equa~-
tions for the third order statistical moment G;U;ﬁ;'can be again derived
in a way similar to the above; however,the number of unknowns will grow
faster than the number of equations. Closing the system in equation (2.3)
at the second order level (the Reynolds stress closure) will be discussed

later in this chapter.

2.3 The Kinetic Energy Equation

For future reference let us take a look at the turbulent kinetic energy
equation. Contraction of equation (2.3) leads to an important equation,

the kinetic energy equation of the turbulence:

2 2 "7""'75

Ty ey T luylate 20 g - Zuguy Uy g r 2o lugug 5
(i) (i) (ii1) (iv)
- 2v uj ,J i.i (2.4)
(v)

—

where q aAG;G;Z

Equation (2.4) states: The change in (i), the turbulent kinetic energy
per unit mass and unit time including the convection transport by the mean
motion, is equal to (ii),the convective diffusion by the turbulence of the
total mechanical energy or the work by the total dynamic pressure of the
turbulence, plus (iii),the work of deformation of the mean motion by the
turbulence stresses, plus (iv),the work done by the viscous stresses of the
turbulent motion, plus (v), the viscous dissipation by turbulent motion. To
close the system of equations (2.2) and (2.4) at this level, which is known

in the literature as the one equation model, the terms on the right hand
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side of equation (2.4) will be approximated employing the eddy viscosity
concept and specifying a characteristic Tength scale (see Reynolds 1976).
However, if we go one step further and derive an additional transport equa-
tion for the dissipation e,then we have the so called two equatidn model.
This model eliminates the need forlspecifying a characteristic length scale
as functionzof position throughout the flow by defining the eddy viscosity

as Vg q2 /e. A detailed discussion of this model and its application

will be presented in Chapter three.

2.4 The Dissipation Rate Equation

An exact transport equation for the dissipation rate of turbulent kinetic
energy (i.e.,the correlation v ”i,z“i,z)
Stokes equations for the fluctuating velocities by appropriate differentia-

can be developed from the Navier-

tion, multiplication and averaging. The resulting equation can be written

as (see Daly & Harlow 1970):

) 2
e+ Uke’k = ‘2 Vv ui’kui,juk,j - 2 (Vui,jk)

(1) (i1)

e —
“(uge + 22Uy P g ve ) g

(ii1)

'2 V(U1,juk’j + uj,iuj,k) Ui,k

(iv)
-2 Vukui,j u (2.5)

(v)

i,Jk

It is an extremely difficult task to consider equation (2.5) in its entirety.
Luckily for high Reynolds numbers flow (i.e. most of the turbulent flows)

a great simplification will result when an order of magnitude analysis is
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employed (Tennekes and Lumley 1972). The terms (i) and (ii) which re-
present the generation of ¢ by the stretching of vortex filaments, and the
destruction through the tendency of viscosity to reduce the instantaneous
velocity gradients are the most dominant terms. However their difference,
which really matters is nearly the same order of magnitude as the transport
terms (iii). The terms (iv) and (v) are smaller than other terms by at

1/2
Re

least a factor of ,where Rz is 'the turbulent Reynolds number; therefore,

these terms can be safely ignored. Hence equation (2.5) can be written as

: e (TTe2 Y
e + Uke,k = (uke +2 > p,iuk,i),k
(i)

"2
=, 2 Vui’kui,juk’j - Z(Vu,i ,jk)

(i1) (iii) (2.6)

Still the terms on the right hand side of equation (2.6) add further unknowns
into the equation set governing the Reynolds stress. These terms are not
directly accessible to measurement and therefore their approximation can

be only verified indirectly by determining whether the predicted distribu-
tion of ¢ is consistent with the measured variation of the turbulent kinetic
energy through a particular shear flow. Modeling of the transport terms,(i),
and production-destruction terms,(ii) and (iii),in equation (2.6) will be

included in the analysis of the Reynolds stress closure.

2.5 The Reynolds Stress Closure Approximation

The Reynolds stress model begfhs with the equations (2.1), (2.2), (2.3)

and (2.6). In order to solve equation (2.3) for Ujuy,some information about

the higher order moments uiuj“k andPui j must be provided. Those terms

will be approximated as functions of the lower order moments. Such approx-

jmations will rely heavily on experimental data to determine the proportionality
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constants and certain key parameters.

The idea of proposing a model like (2.3) was first suggested by
Rotta (1951). Some predictions have been recently made following this idea
by Daly and Harlow (1970), Reynolds (1970) Donaldson (1971), Noat, Shavit and
Wolfstein (1972), Hanjalic and Launder (1972) and Lumley and Khajah-Nouri (1974),
to name a few. However there have been widely different views on how to treat
the third order moments, the triple velocity correlation in particular.
Before we proceed with the analysis of closing the Reynolds stress equations,
-a new arrangement of the terms involved in equation (2.3) will be made. For
convenience in later analysis we will separate the effects of the various
terms to be modeled and group them according to their rules and functions
in the equations of motion.

An expression for the pressure can be obtained by taking the divergence
of the Navier-Stokes equations for the fluctuating velocity component uj-

The result is (Lumley, 1978)

-.-LL— =2 |

coUs s P Us Us s o= Uslls s 2.7)
p T,JUJ,T u133u391 u1quTJ (

The right hand side of equation (2.7) contains two types of terms. The
first term is linear in the fluctuating velocity and related to the mean
velocity gradients while the second and third are nonlinear in the fluctua-

ting velocity. If we conveniently split the pressure such that

(1)
P ..
AR
- T2y My | (2.8)
(2)
P ii
- e 2 . Ue o = Uslle o= 2.9
> Ui 343,17 YiY5,45 (2.9)

where the correlations with p(1) and its gradients are known as the

"rapid terms". While the correlations with p(2) are known as the
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"return-to-isotropy"terms. This part is responsible for the return of
anisotropic turbulence to isotropy in the absence of other disturbing effects.
Based on the separation of the pressure we may write the pressure strain

term in equation (2.3) as follows:

)
(u,

where p(]) and p(z) are given by equations (2.8) and (2.9).

The primary function of the viscous terms(2 v E;j;ﬁ}j;)is to dissipate
E;U; into heat; however, it can also cause interchange of energy among the
components of ﬁ;ﬁ;ﬁ If we add and subtract the trace of the viscous term
which is twice e, the dissipation rate of the turbulent energy, we get

(Lumley 1978)
2\)U1kUJk (ZVU ka

§as1.j) +-§-e:6,ij (2.11)

where now the terms in the bracket act to interchange energy among the compon-
ents of "i”j while %'Edij is responsible for their dissipation. Substituting

equations (2.10) and (2.11) into (2.3),the Reynolds stress equation takes

the form

Uin + Ukuin’k L (Uiuk Uj,k + UJUk U k)
(i) (i)

- [u; 54 = “(uiuj),k (u GJk jSik)],k
(111)

2) b2 ]
* [D (uisj uJ"l) -2 \)U k J k 3
(iv)
(1)
] -2 ..
+ p (ui’j+ uJ’i) 3 €51J

(v) (vi) (2.12)
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Equation (2.12) states that the substantial change of G;U; during
convection,(i),is equal to (ji), the production of the Reynolds stress
from the mean flow, plus (iii),the gradient of the transport from the
velocity and pressure fluctuation, plus (iv),the return to isotropy of the

Reynolds stress, plus (v),the rapid straining change of usug plus (vi),

»
—————

the mechanical dissipation of u1.uj into heat.

2.6 A Model for the Dissipation Equation

Several forms analogous to that given by;equation (2.6) have been
proposed to model the dissipation equation. Hanjalic and Launder (1972)

suggested the following transport equation for e:

2 .
. = u.u 2
e + Uk € g T Ce( g’"k“ze;z),k - Cd € lé‘k Ui,k - C€2 €=2‘_ (2.13)
q q
(i) = (i1) = (iii) =
diffusion production destruction

where Ce, CeT and C.p are model constants to be determined from experimental

data. Lumley and Khajah-Nouri (1974) proposed an equation of the form,

3 -

2
€+Uk€k="(€uk)k+w§:—-é‘ (2']4)

£

where the dimensionless invariant function y contains the entire mechanism
for production and destruction of ¢. Determining the functional dependence
of ¢ is not an easy task; however,since y represents the production/destruc-
tion of ¢ it is reasonable to assume that y depends on the Reynolds stress,
the mean velocity gradients,and the dissipation. .In fact, there are a-}arde
number of invariants that can be formed on which the function p might depend.

This 1ist includes:

_ 2 2 (2 |
v = [II, III, by5(a7/ely 5)s by (@7 Uy ) *+ venes R,1 {2.15)



where
I1 ='bijbij/2 (2.16)
III = bijbjkbki/3 (2.17)
and bij is the anisotropy tensor which is defined by
TR : | :
I |
bij 37 3 Gij ! (2’18)

Note that bij is symmetric, dimensionless, has zero trace, and vanishes
identically when the turbulence is isotropic.
Finally Rz is the turbulence Reynolds number defined to be:

2
RE = (‘1?- /(9gv) (2.19)

The factor of 9 is included in the definition so that R2 reduces to the
traditional form Rn = ug/v, since ¢ ~ u3/z and q2 =3 u3.
If we assume that the velocity gradients are not too large, then we

can expand ¢ as given by equation (2.15) into a power series in bi

it
] 2
v =9ty b.‘g'—U"'l’J bz.g—U-.ﬂ"... (220)
0 151 e 71, 2 "ij e Ti,d )

where the coefficients are functions of II, III and the Reynolds number.
If we substitute equation (2.20) into equation (2.14) and retain only first

order terms, the equation for ¢ becomes:

é + UkE,k | - (Euk),k - wl € bij Ui,j - ¢0 (2-2])

R

Now what remains is to model the transport term of csand to determine the
functional dependence of wo and the value of w]. However, there is no reli-
able comprehensive set of data for a general flow from which the various para-
meters in the closure can be evaluated at the same time. The best that can be

done is to assume a hierarchy of simpler flows in which progressively more
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(or less) of the unknown terms vanish identically sothat the unknown co-
efficients which occur in the assumed closure for the remaining terms
can be progressively evaluated. This progressive evaluation can be utilized

since the closure parameters are assumed to be universal.

2.7 Decay of Isotropic Turbulence

To determine Yo let us consider a simple,homogeneous,decaying, isotropic
turbulence without the mean strain. For this class of flows the governing
equations are the turbulent kinetic energy equation (2.4) and the dissipation

eduation (2.21). They simplify to:

Q% = -2¢ (2.22)
' el | (2.23)
C oL, £ .23
€ ¢° qz
If we assume that the turbulent energy decays as
q2 nvth v | (2.24)

where t denotes time and n is an exponent to be determined,
then from equation (2.22) and (2.23) we obtain the following relation
for ¥g°

¥ - Zi%ill (2.25)

The asymptotic values for the expohent n according to Hinze (1975) is that n=1

in the limit Rl*« and n=2.5 when Rz+o. This suggests that:
2.8 < ¥g. < 40

The grid-generated iséfropic turbulence experiments of Comte-Bellot and
Corrsin (1966) indicate that the exponent n lies between 1.2 and 1.35. For
a constant ¥g model, various numerical values for Yo has been proposed.
Hanjalic and Launder used Vg = 4.0; Launder, Reece and Rodi (1975) used |

vg © 3.8; Zeman & Lumley (1976) suggested that Yo = 3.8; and Reynolds (1976)
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recomnended that y, = 11/3.

A constant Yo model had both successes and failures in the 70's. More
discussion on these models will be presented in Chapter 3 where the two equa-
tions for the k-¢ model are reviewed. More recently Lumley (1974), Hanjalic and
Launder (1976), Reynolds (1976) and Lumiey and Newman (1977), and others
have proposed a variable Y- Hanjalic and Launder (1976) assumed that ¥g
depends on the turbulent Reynolds number only and based their formulation
of Yo On the data of Betchelor and Townsend (1948) which is, in fact, a

low Reynolds number flow. They suggested;
by = 3.6 [1- .23 exp (-.14 R9)] (2.26)

| Lumiey and Newman (1977) have also included in the dependence of
¥ the first invariant of the anisotropy II. The form they proposed based is
on the experimental data of Comte-Bellot and Corrsin (1966) for which

R2>100; they suggested:

by = l%.+ .98 exp (-2.83//R)) [1-n (1-55 II)] (2.27)

- Chung(1978) reexamined Batchelor and Townsend (1948) and Comte-Bellot and

Corrsin (1966) data and suggested the following:

by = 3.55 [1- .21 exp(-Ri/z.S)] + .45 exp (- 36.7//K) (2.28)

He argued that the inclusion of II in the ¥q dependence is correct based

on theoretical grounds, but unnecessary in practice. Figure 2.1 shows a
comparison of the above three models for Yo for a wide range of Rz' As

can be seen from Figure 2.1, the Lumley and Newman (1977) and the Chung (1978)
formulations for ¥g approach nearly the same value when Rz > 200. From

Figure 2.1 it can be seen that the formu]ation_of Lumley and Newman

(equation (2.27)) is in error for small Reynolds numbers; in particular, when
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5« Rg < 100

This is because the formulation of equation (2.27) was based on high
Reynolds number free shear flows. More important is that the basic
assumptions in forming the Reynolds stress and the dissipation equations
are valid only for high Reynolds number flows. Equation (2.27) worked
remarkably well in the wake calculations of Taulbee and Lumley (1980) and
in the present study; for both flows the turbulent Reynolds number is in

the high range, Rz > 400.

2.8 Determination of ¥

In order to determine ¥y let us consider a turbulent flow subject to
constant strain. Examples of such flows are: ‘

a) Turbulence distorteﬁ by plain strain (Tucker and Reynolds ‘1968).

b) Turbulence passing through contractions (Uberoi 1956).

c) Nearly homogeneous shear flows (Champagne et al. 1570).

The rate of strain was nearly constant in all of the above experiments.
~For these flows the energy and dissipation equations can be written as:

-2--

Dg” .. -2
5 Uiy Uy 5 -2 (2.29)

De _

2
[
Ot =" ¥ eby -, z (2.30)

where-%g stand for total derivative. The empirical parameter wT can be

obtained from equation (2.30) using the above experimental data. In fact
Rodi (1972) predicted the flows of Tucker and Reynolds (1968) and Champagne
et al.(1970) quite well by taking Yy = 2.4 and Yy = 4 respectively, however
when Yy = 2.4 was used in other flows, it gave values of e which were too low

and there was hardly any decay of the kinetic energy. Reynolds (1976) reexamined



the same experiments cited above and suggested that ¥y = 2.0 is suitable
for most free shear flows. Launder et al. (1972) give ¥y = 3.10 and

| Hanjalic and Launder (1972) used U= 2.9 in the calculations. The variation

of ¥y from one flow to another suggests that 7 can not be a universal

constant ,but some function of the state of turbulence. It is desirable

to determine the functional dependence of vys however,lack of reliable

experimental data makesit difficult at this time to predict a variable ;.

The value of ¥y = 2.0 seems to work well in the present study with the y,

given by equation (2.28).

2.9 Return to Isotropy

In the absence of other influences the turbulence components inter-

change energy so as to become more nearly equal. This return to isotropy

is produced mainly by the pressure fluctuation term and in part by the
‘viscous term found in term [iv] of equation (2.12). The problem now

~ is to analyze the correlations that control the return to isotropy. In
order to do so let us consider a homogeneous flow without mean velocity

gradients. The Reynolds stress equation (2.12) for this flow becomes:

...;__._ p(z) 2 2

The quantity in the square bracket is responsible for the return to isotropy.
It is a symmetric tensor, it has zero trace,and it vanishes identically when
the turbulence is jsotropic.

The first return to isotropy model was proposed by Rotta (1952).
He assumed that the return to isotropy is linearly related to the deviation

from isotropy; that is,
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Figure 2.2 Variation of the Return to Isotropy Function with the

Turbulent Reynolds number for a fixed value of (-II).
Data of Comte-Bellot and Corrsin (1966).
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(2)

. .t .
(ug 5 +u

3,i) = = Cye byy (2.32)

o i

where C1 is an empirical parameter to be determined and bij is an
-anisotropic tensor which satisfies'the prescribed requirements and
defined by equation (2.18). In previous works, C1 has been taken as a
universal constant with values ranging from C1 = 2.5 as suggested by
Reynolds (1976) to the value of C; = 6.7 as given by Wyngaard and Cote
(1974). More recently Lumley and Khajeh~Nouri (1974), Hanjalic and
Launder (1976),and-Lumley and Newman (1977) have proven that C, may be

a function of several variables. Now since we have included part of the

viscous effect in the return to isotropy term we may write equation (2.32) as:

pl2) — 2 )
; (ui,,j.’.uj,i) - 2 vui,kuj,k +§' E:(Sij = - € ¢.ij ( -33)

where the inclusion of ¢ in the right side of Equation (2.33) makes the ex-

pression dimensionally correct with the function ¢ij dimensionless. ¢1j_has

zero trace and is responsib]e‘for the return to isotropy. If we replace ¢ij
by c)bij as is commonly used in the literature, and substitute equation (2.33)

into equation (2.31) we get,

Ugug = -Cyb

1 - g.ga.. (2.34)

ij © ij

where C, is the same as in equation (2.32).

2.10 Determination of le

It can be seen from equation (2.34) that C1 can be determined by the

history of the Reynolds stress, the present values of bij’ and the dissi-

pation. Hence we can write in general:

C; =G4 (II,III,RZ) (2.35)
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Now if we consider equation (2.34) as a governing equation for the

anisotropic tensor bij it can be shown after simple manipulation that

S (i) = - 55 (€2, | (2.36)
q

If we define a non-dimensional time t by qz/s, then

€

——d =d" s
(az) t T (2.37)

and the eguation for bij can be written in the form

4 (by) = = (C1-2) by | (2.38)

From equation (2.38) it can be seen that we must have

C; =220 (2.39)

and C1‘= 2 corresponds to the no return to isotropy which implies
that bij remains unchanged.

To determine the functional dependence of C] we make use of the experi-
mental data. ~ Lumley and Newman (1977) have shown by using Comte-
Bellot and Corrsin's data (1966) that in a vanishing small anisotropy, ¢
takes the form:

1/2

C1 =2+38 Rz (2.40)

However, the linear behavior of CT in the limit Rzea and II-o remains as

an assumption. (SeefFigure 2.2). Chung (1978) attempted to reproduce the
same result as in equation (2.40) and found that (in the limit R£+w;and
II-9) the dependence of C] on II is stronger than that on Rz' Nevertheless

he accepted the basic assumption in (2.35) and expressed C, as follows:

C; = 2 + ¥(IL,IID)/u(R,) (2.41)
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where “(Rz) is obtained by considering the average time scale of the return-
to-isotropy over the spectral space - the approximate form being given by

-1/2

u(Rz) = 3.16 R + 1.0 ' (2.42)

and where y is a correction to the time scale due to the anisotropy. The
functional dependence of = on II and III was determined by the use of the
data of Comte-Bellot and Corrsin (1966), Mills and Corrsin (1959), and
Uberoi (1956);the approximate form of v is

y = 110 II exp (-83 11%/2)[1-2.47 111V3 4 2.24 1117 (2.43)

A careful examination of 12 different experiments of the Comte-Bellot and
Corrsin data confirms Lumliey and Newman findings if C1 behaves linearly in
the limit R2¢w, see Figure 2.2. The fact that C]+2 when R2+m and the data
of Figure (2.2) support the validity of equation (2.38); the form for Cy
proposed by Lumiey and Newman (1977) is given by:

Cy =2+ (§+3 111+ 11) F (R 1T, 111) (2.44)

. The realizability condition must be imposed, C1*2.0 when either component
of energy vanishes,or Schwarz's inequality is violated. It can be shown
(Lumley 1978) that in order to satisfy the realizability condition we must
have:

SH3II+ 1150 (2.45)

The function F(R,, I, III) must be determined such that F+0 as R2+0,
F+8.1 Rz"5 when II+0 and R¢+w,'and it fits the experimental data. The
functional form that satisfies the realizability conditions and fits the

data is given by:



25
2
gy =2+ (%-+ 3 111 + II) exp (-7.77/Rl/2)[72/Rl/

+ 80 en (1 + 62.4(-11 + 2.3 I1I})] (2.46)

Equation (2.4') worked quite well in predicting the plane and axisymmet-
ric wakes (see Taulbee and Lumiey 1980), and it did as well in the present
study. When equation (2.41) was used in predicting the axisymmetric jet
(R£> 400), however, there were no significant changes in the final result.
Figure 2.4 shows that equation (2.41) is violating .the realizability
condition (2.45) since for a neaative III. the first invariant II has a

limiting value of |II]| < 1/12 (Lumley 1978)

2.11 The Rapid Terms

The pressure-velocity gradient term of the pressure stfain rate contribu-

tion can be obtained by solving equation (2.8) using Fourier transform for
pl1),
Assuming: a homegeneous mean field the rapid term can be written as

P . ‘ L. +1. )a2

s Wyt “j,i) = 5. ( piqj qui)q (2.47)
where

kik
[, = f IR (2.48)
P1q 22 Qa -
and qu is the spectrum of the Reyholds stress.
An expression similar to equation (2.47) was first derived by Rotta (1951).

A model for Ipiqj has been proposed by several authors such as Hanjalic and

Launder (1972), Launder, Reece and Rodi (1973) and Lumley (1975).
It is apparent from equation (2.47) that the rapid term arises from the
interaction of the turbulence with the mean velocity gradients. The fourth

order tensor [ must satisfy the following constraints (Lumley 1978):

pigj
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Symmetry:
Tpigs ™ Tpisq 2 Tpigi = lipgi (2.48a)
Incompressibility:
Ipiig = O (2.48b)
Normalization:
L 2 |
Lopqi = Up!/d (2.48c)

When the turbulence is isotropic, equation (2.48) can be integrated

_directly;hence (Crow, 1968, Rotta 1951a),

Tpaig = (413%pq ~%pi8q1 = Spjdqi) /%0 (2.49).

In general, I would depend at least on the anisotropic tensor b;.

pqij ij

- and the Reynolds number. Hanja]iC‘and Launder (1972) used a model for
Ipqij with linear and quadratic terms in u. uJ Later, Launder, Reece and
Rodi (1975) dropped the.quadratic terms,but-Lumley and Khajeh-Nouri (1974b)
also used a non-linear term. However, Lumley (1975a) argued that the model

must be Tinear in u.u,. Following Lumley (1978) we take the tensor I

LANN piqj
to be related to combinations which are linear in the anisotropic tensor
bij'

A form which satisfies all the above requirements is given by
Toiag = (4pi%q1 = Spqfij ~ Spydqi)/30
- (bpi8qi ~ Spinqi)/3 * lopqgfyi * Digdsp
+b .5 . %+ b.. 2.
prsq1 b136pq 11 bp16q3/3 46p1bQ1/3] (2.50)

where ¢ is an empirical constant.
The constant ¢ should be evaluated using experimental data for a homo=

geneous turbulence from such experiments as of Tucker and Reynolds (1968)
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and Champagne, Harris and Corrsin (1970). Reynolds (1976) found that

¢ = -.1 for the experiments of Tucker and Reynolds while ¢ = -.2 worked
better for the Champagne, Harris and Corrsin experiments; finally,

he recommended ¢ = -.15. Launder, Reece and Rodi (1975) use ¢ = -.145.
Taulbee and Lumiey (1980) use ¢ = -.15, and this value will be used in

the present calculation as well.

2.12 Transport Terms

The remaining unknown correlations in the stress equation (2.12) are
the diffusive transport terms. The contribution of the viscous terms to
the diffusion is negligibly small for turbulent free shear flows, hence we
will ignore that term. The transport by turbulent velocity fluctuations

can be approximated by formulating:a dynamic equation for Usu Uy .

1]
Hanjalic and Launder (1972) simplified the exact equation for uiuj“k
to obtain the following:
Z - .
Ugusuy = -8 2o Duguy (ugu) o+ uguy () +un (uguy) (2.51)

’2 'L

" where 8 is a fixed constant. However, several computétions (Rodi 1972,
Launder and Morse 1978) have been carried out uéing the simpler model pro-

posed by Daly and Harlow (1970); namely,

2 .
ujuguy = -8 g—-uku2 (uguy) (2.52)

€

Lumley (1978a) argued that homogeneous turbulence is observed to be Gaussian
in the energy containing range, even in the presence of non-zero velocity
gradients, and that departure from Gaussian behavior is associated with
inhomogeneity. This is consistent with the fact that the fluxes G;GEU;
cannot be non-zerb if the turbulence is Gaussian.

By assuming a weakly inhomogeneous turbulence and performing an order of
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magnitude analysis of the exact equations for “i“j”k’ it can be shown that

(see Lumley 1978a):

2 ;E C] - 2
Ui = T 3T e gk * Tsbrare e (gl * Sikdy 85l
(2.53)

and

2y, 3 £ g (2.5

R I € =773 [ [ e +54)
where

Sigh = Uy (i) p + Wiy (uguy) o + 0, (@0 (2.55)
and

—_— -
a +
Gy U, 97 2 UgUp (“q“k),p (2.56)

C] is the same coefficient given by equation (2.39) and b is an arbitrary
constant. The only condition on b is that b<l in order for this model to
relax to Gaussian. Tauibee and Lumley (1980) took b=0 but indicated that
a b slightly greater than zero would give a better agreement with

the experiments. Notice that if i # j f‘k equation (2.53) reduces to the
model (2.57) if

- 2
B = 3 z_b (2.57)

T

The pressure diffusive transport has been neglected in many recent

" ‘computations. Bradshaw and Ferries (1965) indicated that the measured
energy balance closes quite well when the pressure-diffusion term in their
k - equation is neglected. Rodi (1972), Hanjalic and Launder (1975) and

- Launder and Morse (1972) have totally neglected the pressure transport in

‘their models because of lack of evidence of its importance. In order to
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account for the pressure diffusion we assume homogeneous flow and Fourier
transform equation (2.9). The second (return to isotropy) part of the

pressure is then given by;’””'“ -

-8y - .ﬂ-zl)[u (2.58)

where [ ] denotes | Faurfer transform.
Multiplying equation (2.58) by uk,averaging, and integrating the result
yields

-

Gl s
— 1 - o
o2y, = [ (___1} ) Syj, de (2.59)
where Sin is the spectrum of "iuj“k‘
We will define

K.. "~ 3
I i

. . = —d
ijpar f 7 Spgr de (2.60)
and attempt to express the integral as in 1inear combination of the

triple velocity correlation. It follows from symmetry that:

—————

. . = J.. and =1..
I1JPqP Ileqr ITJDQP I‘Jqpr

For incompressible flow we further require:

Tov s ' g T
ijpaj = 0 and Iiippr upupur

The most general linear form of ui”juk contains five coefficients.

However by applying the above conditions all the coefficients can be

determined and we obtain:

Lijpgr = ‘52‘ §ij W - %T)'(Gir m * 8y UjupUg ) (2.61)
Hence,
| o2 1T
-5 U TE (2.62)
2

where q u, is given by equation (2.54).
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2.13 Transport Terms for e

It is nof poséible to write an exact equation f;f‘fhé traﬁsbort of
dissipation,and equation (2.14) has been proposed by an analogy with the
transport equations of velocity and temperature variance. Hence, we have
to model the transport flux EU; by analogy with the transport term for
Reynolds stress.

By assuming that ;72/5 does not vary too much across the width of the

flow (i.e.,across the jet) and that if ¢ vam‘shes,q2 also rmust vanish

such that azm/s remains bounded so that

2. | (2.63)

it follows that

me;z,k = q2 e,k : (2.64)

Thus the analogue to equation (2.64) is:
;z' (suk,,k = me[(qz + ZP/p)uk]’k ' (2.65)

where we have included the pressure transport in the right side of
eduation (2.65).

From equation (2.65) we can again see by analogy that if the transport
of~;?'can be modeled as in section (2.10), the transport of ¢ can be modeled
in a similar way. Using equation (2.62) for the pressure we obtain

%m(e/;‘r) FE (2.66)

euy =
Substituting equation (2.54) into equation (2.66) we obtain for the dissi-—--

pation flux:

‘ V3 —
o= - .9 q°y — e "0 -

ey (2-9b/4)C]+5 (a ) [Ukup + Zuiuk uiup/q Je,p {2.67)
where we have replaced WUy | in equation (2.51) by (6;337m2)2'k

We have to note that equation (2.67) does not introduce a new constant

since C] is the same parameter obtained in the return to isotropy part.
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This completes the Reynolds stress closure which consists now of the
equations for the mean motion; equations (2.1) and (2.2), and the six equations
for the Reynolds stresses components, three normal and three tangential
components, and the equation for the dissipation rate of energy.

2.14 " The Final Form of the Reynolds Stress Closure.

The Reynolds stress equation is now given by

uug + Ulugug) o= =(uuy Uy o+ U Uy L)

2 ¢ 1 2 . 42
[ IZB)C; < Gisk = (2-35/4)C,75 « 3z, Gyds;
G2 3 -
Y20 (e . +1...)q2-2cs.. (2.63)
p,g ‘'pigj = "piqi 3 ©°ij
where
Sigk = Uty (Ugug) o+ g () o+ Ggup (ugu) (2.69)
G, = u.u ;5. + 2u u (u u,) (2.70)
k k'p P k’,p )
and
I, = 1 (b8 . = 8 :b ) + 2w (86 .6 . = & 85 = 8_:8 :
pigi ~ "3 “Ppi®qi T ®piTqi’ T 30 ‘"°pi®qj ~ °pg°ij = “pi°qi)
+c[b 8..+b;, 8. +b 8§ .+b.5 - Dpos.-%5.b -] -
pq ji = Cig jp  piqi  Tijpg 3 “piqj 3 “piqi (2.71)
- ek,
i1,
by ==t - 38 (2.72)

L
o]
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The dissipation equation takes the form

. 2 T

- - _ .9 ik, -

= ek bemmareys o et 2tz s d . (279
o 2

"h eyt

The above system of equations consists of 4 equations for the mean
flow and 6 equations for the Reynolds stress componentsand an equation for
the dissipation rate of energy. This set of 11 equations is sufficient

to solve for the eleven unknowns, hame]y
U, V’ ”, p' UZ, Vz, w2, W, W, W and €,
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CHAPTER 3

The Two Equation Models

3.1 Introduction

The two equation mode]s employ two partial differential equations
of turbulence in addition to the governing equations of the mean motion.
For example, the model of Jones and Launder (k-¢ model) solves for k,
the kinetic energy of turbulence and ¢, the dissipation rate of the
kinetic energy of turbulence, while that of Rodi and Spalding solves for
k and k2 in their (k-kg) model where k is the same as above and ¢ is a
characteristic length scale of turbulence. Spalding (1972) proposed the
k-w model which is similar to the above where he replaces ¢ by (ﬁ)z.
These models, among others of their class, showed some success in the
early 70's in predicting the turbulent flow field, in high Reynolds
number flows such as mixing layers, turbulent jets and near wakes. Less
success has been beported where these models were applied near wall regions
or in far-field jets or wakes (Launder 1975).

In the early stage of this study a great amount of time has been
spent on the applications of the standard version of the k-¢ model. Most
of the calculations have been carried out for the turbulent free jets
(plane and axisymmetric jets). The primary reason for using the k-¢
model was to test several numerical schemes which were developed for use
in solving the system of ;quations in the Reynolds stress closure

(chapter 4.)

3.2 The Eddy Viscosity Concept

Before we turn our attention to the k-¢ model we must familiarize

ourselves with eddy viscosity concept since it is an essential ingredient
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in the majority of the two equation models, which do not solve for the shear
stress uv directly. This concept assumes a simple proportionality relation

between turbuient transport and mean velocity gradient. The proportionality
constant is the eddy viscosity v

defined as (Boussinesq 1877)

. For turbulent free shear flows Vi is

-, 3
W= vy o | (3.1)

Here V¢ is not a property of the fluid as in the laminar case, but depends
solely on the state of turbulence. Hence v can vary from one-flow to
another,and also it may vary across the flow. y
The zero equation model which employs this principle (see Appendix B) has
had a variety of success and failures in predicting turbulent flow fields.
Tennekes and Lumley (1972) argue that the eddy viscosity models are ex-
pected to be successful when the turbulent flow is characterized by single
time and length scales. This suggests that in the similarity regions (the
far field) of turbulent free shear flows, this simple model should provide a
reasonablie prediction of the mean ye]ocity profile and in turn the shear
stress uv. In the k-e model formulation it is natural to assume that the
eddy viscosity will depend on the intensity of turbulence through k, the
kinetic energy of turbulence,and e,the dissipation rate. Therefore we

assume:
vy v K2/e (3.2)
or
2

L K
vy = Cu . , (3.3)

where Cu is a proportionality constant that will be determined.
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3.3 The k-¢ Closure Medel

The k-¢ closure consists of the equations for the mean flow,(2.1)
and (2.2), the kinetic energy equation,(2.4),and the equation for the
dissipation rate of energy,(2.6). For high Reynolds number flow with

‘constant density and viscosity the system of equations can be written

as follows:

Uy, =0 (3.4)
. 1 )
Ui + UjUi,j = o p,‘1 + [\)U.i ,j ujujl j (3°5)
k + Ujk,. = - [uj(k + p/p)]’J - Uy Ui,J - € (3.6)
2
= - [0e] ;- £ - £
et lje y= - lugel 5= Cq puguy Uy 5-Co (3.7)
where
u.u.
k=—L (3.8)
= Z\JUi ’jui’j (3-9)

and Ce] and C82 are the model constants.

The diffusion terms, the first terms on the right hand side of
equations (3.6) and (3.7), will be modeled in a much simpler way than
was done in Chapter 2. It will be simply assumed that k and e diffuse

down their gradients. Thus, we assume

=t .10
ujl + Plo) = 2K (3.10)
and
\) .
—_._t N
uje > s,j (3.11)

where % and g_ are constants to be determined from experiments and v is

the eddy viscosity given by equation (2.3) which is determined by



37

the calculations. Hence with equations (3.10) and (3.11) the system .
equations (3.4)-(3.7) constitutes a closed set which is applicable to any
turbulent free shear flow.

The continuity equation (3.9) and momentum equation (3.5) are written
in Cartesian form in Appendix A. In the momentum equation only the first
order terms will be retained. The estimate of the neglected terms amount
to only about 8% of the total momentum transport when integrated across |
the flow. This particular point will be discussed in Chapter 4 when we

solve for all the components of the Reynolds stress.

3.4 The Final Form of the k-c¢ Model

Now let us consider the application of the k-e model to boundary free

shear flows by introducing the following assﬁmptions:

i. Steady motion (%E = 0)

2 —
i1. High Reynolds number flow (u 3= << e
ENA )

iii. Derivatives with réspect to x are negligible compared to those
with respect to y.
iv. The flow field is far away from the source (kz/e = constant).
v. The W component of the mean velocity is zero and %5 =0,

(in the axisymmetric case §§-= 0).

Based on these assumptions the final form of the k-¢ closure model is
given by:

Continuity Equation:

UL, 1 3yv., 3.12
3 T yT ey ° | (3.12)
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Streamwise Momentum (see Appendix A)

U.g_;b, - 12 im) (3.13)

ey U
k2 : ;
v < Cu ;— (3.15)

ak ak _ 1 3 iVt sk aU\2
U ey &0 (V22 o, (2o L ¢ (3.16)
X y yl oy & Y t'ay
Turbulent "Dissipation” Rate
TR LY N T B L A - L, £ (3.17)
X dy yi 3y J a. Yy el k "t ‘a9y g2 k :

where i=o for the plane jet and i=1.0 for the axisymmetric turbulent jet.
.The model constants as originally proposed by Jones and Launder (1972)

for high Reynolds number flow are given in Table 3.1.

cu Ce] CeZ % 9

.09 1.55 2.0 1.0 1.3

Table 3.1 Empirical values of the k-¢ model constants
as suggested by Jones and Launder (1972).

3.5 Similarity Formulation

An important feature of free turbulent shear flows is their tendency
to become self-similar after certain development regions. As mentioned
earlier, this is consistent with the fact that their motions are chara-
cterized by single velocity and length scales.

Consider either a symmetrical, two-dimensional or an axisymmetrical,
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three~-dimensional jet (Figure 3.1). For the velocity scale we chose the
centerliine value of the mean velocity Um, For the length 2 at which the

mean velocity U is half its maximum. Hence for self-preserving flow we

define:

U=y f(n) (3.18)
and

V= Umh(q) (3.19)
where

n = %127 (3.19a)

Further,the components of the kinematic turbulence stress tensor

can be expressed as:

——

W = 12 gy(n)

v = U% gp(n)

(3.20)
;§.= Ug 93(“)
W = UI’?] g4(ﬂ)

Similarly, the kinetic energy of the turbulence k and the dissipation

rate e, assume the following form:

>
]

Ué K(n)
(3.21)

"

U3
ﬁ—ﬂ{(n)

Substituting (3.18) and (3.19) into (3.12), the continuity equation

€

becomes:

du

A m de ) ] i (-
U & f(n) - g n £'(n) + ;T (n'h)' =0 (3.22)
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Similarly.if we substitute (3.18)-(3.20) into equation (3.13) the
momentum equation becomes:

dy du

L m- [ dg, [] ] ] 'i 1 L m -
Tax T ooaxnff A (ngg)" + o g (9y79,)
m n m

where the prime denotes differentiation with respect to n.

Now for the flow to be self-preserving (self-similar) the equations
(3.22) and (3.23) must be independent of x. Hence the coefficients involved
in these equations must be constants. Therefore for similarity solutions

we must have:

du
A m _
B—;-—-—-dx a, (3.24)
dg _ ‘

where a, and ay are constants.
Equation (3.25) suggests that in the self-preservation region the

turbulent jets (plane or axisymmetric) spread lineariy with x. That is,
2= ax (3.26)

Equation (3.24) is satisfied if Um behaves 1like Um ~ x" for any value
of n. To determine the proper value for the exponent n we impose the
momentum integral constraint,which has to be satisfied at any cross section

X. From Appendix A, the momentum integral constraint reads

X 2.2 i
2 f e + 2.y ’2“" 1yldy = M,/ (3.27)

where

M = 1T1U§ ,_:_0_-____)“‘*"l (3.28)
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In - similarity variables the momentum integral becomes:

@ 2

Gty ;U dy <4
J [fz + g] = 22 3 ] n1 dﬂ = 02 :ll_ﬂ (12])1 1 (3.29)
) 20 4

In order for the right hand side of equation (3.29) to be a constant

we must have;

Ué 271 = constant (3.30)

Hence from equation (3.26) and (3.30) the centerline velocity of self-
. preserving turbulent jet must have the following decay law:
i+l
Um v X T2 (3.31)
The constant of proportionality in equations (3.26) and (3.31) will be

determined based on experimental data of the plane and axisymmetric jet

respectively.

Now the continuity and momentum equations take the form:

- a2 F(n) +nf ()] + L (aTh(n))! = o (3.32)
n

- a5 £(n)% + nfn) £ ()1 + hi(n) ' (n) - Tln'gyn) 1"
n

= a;(1+1)[g(n) - gp(n)] - ay[gy(n) - g5(n)In =0 (3.33)

where a4 is a constant for a particular flow.

The continuity equation can be integrated directly to give

a . . n .
h(n) = — [a"*1F - 151-[ n'fdn] (3.34)
n

[¢]
If we substitute equation (3.34) into eguation (3.33), the momentum

equation becomes:



43

i+1 1 " 2 L
WL [ £
n o n
i+] g
+ a,(ﬁ-—)[grgzl + a;[9y-950n = 0 - (3.35)

where we have used the eddy viscosity hypothesis (3.14) and (3.15); that is,
g =-C &= F | (3.36)

If we substitute (3.18) and (3.21) into equation (3.16) and (3.17)
and use equation (3.24) to eliminate the cross stream component of the

mean velocity, the energy and dissipation rate equations become:

C 2 . . L . 2 . )
(;E’é— n'k) + g -’—"2'1 [K' f n'fdn + 2n'KF] + € —’é—- nf12 _qiE =
k
° (3.37)
c 2 : N
K 2 1 i+] ' 1 . .
(;ﬁ'gf-n E')' + ay —Ej-[E f n fdn + (5-i) niEf)
o
2 . 2 .
E K i 12 E® 1 _
+ Ce] (T(-)(cur) n f~ - CsZ rn =0 (3.38)

Now let us define the term involving the integral in the above

equations as follows:
n

G(n) = [ n' f(n)dn (3.39)

o}

Further the momentum integral equation (3.29) can be written as

n
P(n) = [ () n' dn (3.40)

where we have neglected the turbulence contribution to the momentum

integral and we have the following conditions on P{n):.
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P(o) = o (3.41a)
Ug i+l
P(=) = "y 1+1 (m) (3.41b)
v

The parameter alxwhich represents the spreading rate of the jets is a
scaling factor in the above system of equations and it can be eliminated

if we define a new variable such that:

£ = VE}n (3.42a)
d = Yaydg (3.42b)

where d is the jet diameter. If we write equation (3.31) as

1+1

Um = (_q (3.42c)

where C is am empirical constant,then the second condition (3.41b) becomes

P(w) = — (3.43)

2(i+1) ™1 ¢?

The final form of the k-e closure model for the self-preserving jet

is now given by the following system ordinary differential equations:

2 . . .
[(Cu é—) gF' ]+ 3—%1- [Gf' + e:’fZ] =0 (3.44a)
(a) (b)

2 i 2
K™y 1T 1+] ' E
[(Cu-E—)gIK] [k + 267KF] + (C, F)e'F’

IN
[ ]
Ny
-de
m
"
Q

(a) (b) (c) (d) (3-440)
[(Cu‘E’ ) G gy 1 - [6E" + (5-1) i Ef]
(a) %e (b)
c,(c -K—Z-)-g— 122 ¢y ¢ 52 0 (3.44c)
el*'7u B’ K 5 g1 XK )

el
(c) (d)
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pr-elfl =g (3.44d)

G' -g'f=o0 (3.44e)

Here we have expressed the integrals which result from the continuity
equation and from the momentum running integral in differential form -
equations (3.44d) and (3.44e)- so that the above system of five equations
can be solved simultaneously. Hence with these constraints both the

momentum and the continuity equations will be automatically satisfied.

The terms in the above equations can be identified as:

a) Turbulence diffusivevtransbort. |

b) Convection or advection.

c) Production by the mean motion.

d) Mechanical dissipation or destruction. .

Boundary Conditions

The only constraint which has been imposed on the system of equa-
tions is that the requirement that the non-dimensionalized mean velocity
at line of symmetry (£=0) be equal to unity. Since the exact values of
the energy and the dissipation at £=0 are not known, we can only assume
that their derivatives at the line of symmetry are zero. At the outer
edge (£+=) we require that the functions f, K, and E and their deriva-
tives vanish. The equations (3.44d)and (3.44e)are first order differen-
tial equations, and the obvious conditions on P and G are that they
approach zero as £+0. At the outer edge the equations for P and G will
be evaluated from the difference equations.

Based on these conditions the above equations will be written in

finite difference form and evaluated at the centerline. Hence at the
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centerline of the jet (£=0) the system of equations (3.44) becomes:

) ,
K ' 2 _

2(Cu Ej) f''+f =0 (3.45a)
o KB

(1+])(“k f-J k'* + (i+1) KF - E =0 (3.45b)
i+1 C“ K " i 5-1 f . E” =0 (3.45c)

( )(;;-E—OE + (1+1yi-§-l Ef - Cp ¢ = .45¢

P(0) = 0 (3.45d)

G(0) = 0 (3.45e)

Recall that i=0 corresponds to the plane jet while i=1 for the

axisymmetric case.

3.6 Quasi-Linearization

An analytical solution of the system (3.44) has not been obtained, and
the best that can be done for now is to obtain a numerical one. For most
practical purposes of engineering interest, a numerical solution will pro-
vide the required information with a fair degree of accuracy. However,
numerical instabilities which arise mainly from the non-linearity of the
differential equations are of major concern since they can prevent any
reasonable solution of the éystem. ‘Also the above system of equations
are strongly coupled and this may contribute to instability. To overcome
these difficulties the equations will be linearized, and then iterations
will be carried out on this linearized set.

In order to do this let us consider the case of a two-dimensional jet
(i.e.,i=0); the treatment of the axisymmetric case will be quite similar
to the two dimensional case. For the two-dimensional case we let i=0 in

(3.44) to get:
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(Df') + %(Gf' +f2) = 0 | (3.46a)
(?%(' KI)I + JZ_(GKI + ZKf) + Df'2 -E=0 (3.46b)
' 2
Q€)'+ e +5EF) +C DEF2-c, B =0 (3.46c)
€
Pt - 1=2 =0 (3.46d)
G' - f = 0 , (3.469)
where
KZ
0= Cu & (3.47)

The non-linear terms will be expanded in a Taylor series about some
known values and only the first order quantities will be retained. For
example, let us consider the last terms in the momentum equation (3.46a).

They will be Tinearized as follows:

2 . 22
£ = £5 + 2f  (f-f,) ~ (3.48a)

GF' = G f) + G (F'=F!) + £ (G-G,) (3.48b)

where the quantities with the "o" subscript are assumed to be a constant
and in this case they are known from previous iterations. Hence the

equations (3.46) can be written in the following linearized form:

6=t (f+ 6F'), (3.49a)

1
2

N} —h
o™

G
Y 0 £
(DF')" + 5= ' + f f +
D ' GO ' ' ' '
(;E k') + — K' + foK + KOf + K, G+ (2Df )0 f' - E

= 1 (2kF + 6K'), + (of %), (3.49b)
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G C
D 1\ 1 _9_ | éf' ' €2K ' [l
(;e- E')' + = E' + (2 - cu 5 )OE + (ZCquKf )Of
5E P CeZC E Eo‘ 1 .
+ - f + (Cuce]f -§—E—)0K + 5 G = 2-(5Ef + GE )0
+C(C. fo- ‘a2 EK) (3.49¢)
1 D 0 '
P! - 2f f =_fl | (3.49d)
0 0 ‘
&' - f=o (3.49e)

3.7 The "finite" Difference Equations

Using a control differencing scheme (see Figure 3.2), which is of a
second order accuracysthe differential equations (3.49) can be expressed
in finite difference form.. After some algebraic rearrangement of the

1

various terms the following difference equations results:

+D, 6, 40 +D. G.
[——liér-ﬂ 3555 1o Fyq + [F; - =51 ;5 + [_J._Tfal + 21 fiy
2AE 2 AE 2AE
+ (fiig G. = (fz + G. f ) (3 50a)
270 7] i Tidlo s
D._]+D. G ]
C 2'"Jo j-1 F [f ] * Z ‘?l ZAE
ZOKAE K
D f! 0.f.
= ( AE )0 fJ 1 + (K ) f ( A-E-!.)O fj"']
N '2y .
+ (34, 6; - —{ZK fi + 65Ky + (04559, (3.50b)
D. ,+D. G. 4D. cc
e R R T - R A S
20 A€ 4870 "J- J 20_ag b J
D.,.+D. G, CC . flk,
S RS R el ji
* 7=+ 5 ax5do Ej41 - o Fia1
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C C ,fiK.
5 el
+3 (E), f; +»(—2—Z§_l—l)o o

E.
+[C,Cqf,8 - —H—Egilq K + 3 (Eg) 6
’;

< . '2 1Ko
2-(5Ejf + GJEJ)O + ch]cu(fj Kj)o 2( ) (3.50c)

P.
J-1 3, + ]
3 R 7 (f j=1 fJ)o 1772 (fj-T ¥ fJ')o f
1 ,.2 ‘
=L (7 .+ (3.50d)
2 Vi -l J’o
G. G.
=1 .1 -
AE 7 * 3 fj-] + fj = 0 (3.50e)

The preceeding system of difference equations (3.50) can be written

in the following matrix form:

oy 0 0 o o [r ] [y 0 0o o bd [F
a1 3 0 0 0K by by by O by | K
i1 0 a3 0 0 ] E by by byy 0 byg o E
ay 0 0 3 0 X Pj_] b41 0 0 by O Pj
12g3 0 0 0 g Gj_1 bey 0 0 0 bg Gj
_ A A -
ep 0 0 0 o | Rl |
Cr G2 0 0 0 Kl |9 (3.51)
s G 0 Gy 0 0| Enlold
00 0 0 0[Pl |4
0 0 0 0 0|6, |0
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where the a's, b's and c's are the coefficients in the difference equa-
tions (3.50) and the d's are on the right hand side of the equations. At
the inner boundary (£=0) the system of equations in (3.51) will be replaced
by the boundary conditions (3.45)." At the outer edge the functions F, K and

E go to zero, and G and P will be evaluated using equations (3.50d and e).

3.8 Similarity Solution

The system of equations (3.51) is of the same form that is given by
equation (2) in Appendix F. Unlike the conventional numerical method, the
" numerical scheme which has been introduced in Appendix F solves for the un-
knowns at each grid point simultaneously. This method eliminates some of
the errors arising from the coupling of the equations of motioh.

To start the numerical solution we have to guess some suitable profiles.
From this first quess the coefficients in the difference equations and the
source terms will be evaluated. Then using the scheme mentioned above
(Appendix F) a new profile will be calculated. With the new profiles, the
coefficients and source terms will be updated and another iteration will
take place. This procedure will be repeated until the differences between
successive solutions reach a certain fixed tolerance, signifying convergence
to the desired solution.

The initial profiles are obtained from the eddy viscosity solution
which is given in Appendix B. The mean velocity profiles are given by the
exact expressions (B-14) and(B-26). The parameter C in these equations is
selected based on experimental data. The kinetic energy of turbulence and
the dissipation rate will be estimated based on the observed values of K
Eand uv  (See Appendix C).

Several attempts have been made to predict the flow field of the plane

and round jetsusing the initial profiles described above,but we could not
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find a reasonable solution with the set of constants that had been orig-
inally proposed by Jones and Launder (1972) and given in Table 3.1. It has
been observed (present study) that the k-e model was not so sensitive to
the constant in the diffusion term as it was for the constant in the prod-
uction/destruction terms in the ¢ equation. This behavior has been found
not only in the axisymmetric jet but also in the plane jet as well.

The constants associated with the k-e model appear not to be universal since
they differ from one flow to the other. In particular, a set of constants
that workswell in plane free shear flows will not do as well in the axis
symmetric case. Over the last decay several analyses have been made to
establish a set of model constants that agree well with experimental data.
For example, Launder et al. (1973) have done extensive studies of turbulent
free shear flows and reevaluated the model constants (see Table 3.2).
Hoffman (1975) examined the constants in thé diffusion terms of the k-
and e- equations for channel flows. Pope (19?8) analyzed the plane and
round jet,and he added an extra term in the dissipation equation for the
round jet case to account for the vortex stretching effect.

Hassid (1979) solved the k-c model for ;omentumless wakes and suggested
another set of constants. Hanjalic and Launder (1980) proposed a modified
dissipation equation and added the second order terms to the production in
the k- and- c- equations. They predicted the plane and axisymmetric turbul-
ent jets with their improved model and concluded that further ihprovement
of the model will widen its application to a large range of shear flows.
Table (3.2) shows a comparison of the recently proposed model constants for

the k-c model.
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{ Reference

Flow Cu Ce] CeZ 9 g,
Jones and Boundary
Launder (1972) layer .09 1.55} 2.0 1.0 1.3
Launder et al. Free shear
(1973) flows .09 1.44 |1 1.92 | 1.0 ] 1.3
Hoffman (1973) Channel
flow .09 J-1.81 | 2.0 2.0 | 3.0
Pope (1978) Plane jet &
: round jet .09 1.5} 1.90 ] 1.0 | 1.3
Hassid (1979) Momentumless
wake .1667 |1.44 | 1.92 | 1.0 | 2.0
Hanjalic and Free Shear
Launder (1980) Flows .09 1.44 1 1.90 | 1.0 | 1.3
: Plane jet .09 1.45 | 2.0 1.0 | 2.0
Present study
Round jet .09 1.55 | 2.0 1.0 | 2.0

Table 3.2 A Comparison of the Proposed Model Constants in the

k-¢ model.
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3.9 Proposed Model Constant

At the outer edge of the free shear flows such as the turbulent jets
and wakes one may expect that the diffusion in the k- and - equations is
balanced by the convection and that the dissipation is identically balanced by
the production. Hence if wé evaluate equations (3.16) and (3.17) near the

outer edge of the flow we have:

ik, itk L3 i Cu K2 ok

y bty ng' 3y (y 5y € ay) (3.52a)
LT ERE BV S T BT G Y (3.52b)
R TIE 3y ay Y 3 ¢ )

Further,at the outer edge (y»=),the lateral component of the mean velocity

V approaches a constant value so that:

V ¥ const (3.53a)

Vs U (3.53b)
and

] ]

= (3.53c)

Hence the equations (3.52) can be written as:

; C 2

3 (ylvk) = & (yf ko 3k .

sy W Vk) =55 (y' 3 © 5y) (3.54a)
. . C 2

3 (ylve) = & (yi L K 2e

3y W Ve) = 55 v' F o) (3.54b)

wk 3k _ =0 (3.55a)
g, €

c
a_u_';__.?_e_- eV =0 (3.55b)
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where it can be shown that the integration constants are zero in this case.

Dividing equation (3.55a) by k, equation (3.55b) by e, and subtracting

yields:.
11 3¢y - (3.56)
¢ "‘(zo‘?i“ co ) O
— - k e
‘Direct integration gives:
a /0
KE K (3.57)

- = COﬂSt
£ . ;

Now from equation (3.57 and the viscosity hypothesis (3.14) we must have:

ety (3.58)

In the present study we have found that unless o = 2 I the eddy viscosity
(kzle) will not take asymptotic value at the outer edge of the flow but in-
creases instead. Therefore if we chose.ck = 1.0 then .= 2.0. The best fit

constants for the similarity solution are included in Table 3.2.

3.10 Results and Discussion of the k-e¢ Model

Several computer runs were made for different values of the model
constants presented in Table 3.2. The results were analyzed and compared
with the best available experimental data.

The constant T in the diffusion term of the k-equation is, in fact,
arbitrary and the choice of o = 1.0 seems to be the simplest choice. How-
ever, this fixes a_ (Section 3-9) and transfers any adjustment of the dif-
fusion coefficients to Cu. On the other hand, C€2 was evaluated from the
data of decaying isotropic turbulence (Section 2.6) where the value C82 =2
was the agymptotic value of C.€2 for a large turbulent Reynolds number. In
other words we may say that Cu = .09 and Cs] = 1.45 or CE] = 1.55 are ob-
tained by computer optimization for fixed values of O Tg and CsZ'

Changing Cu by a few percent will not effect the overall result as much as
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it did when the change was made in Cel' For example, for Ce] = 1.45 an
excellent agreement with the data was achieved in the plane jet; for

the same value of Csl,the velacity profile for the round jet was too narrow
(1., $% = .064 instead of 3 = .086 - .09). The choice of C_, = 1.55

in the axisymmetric jet led however to a better result.

In previous theoretical work (eg. Taulbee and Lumley 1980)!the: decay
of the centerline mean velocity and the spreading rate have been given
great attention. The importance of these particular quantities - spreading
rate and the decay rate of mean velocity - will become apparent when we
discuss the momentum conservation in a later chapter. Unlike the routines
of Taulbee and Lumley (1980) and others who integrated downstream until
self-preservation was reached, the similarity solution presented here was
obtained for the self-preservation region. Hence the spreading rate para-
meter in the integration routine will be equivalent to the width parameter
of the mean velocity profile in the%similafity solution.

A convenient measure for the spreading rate which is widely used in
- the literature is %ﬁa where the length scale ¢ is defined as the non-
~ dimensional lateral distance at which the axial mean velocity is a half of

its maximum. The constant C in the decay of the centerline mean velocity

will be calculated from the momentum integral (equation (2.43)); that is,

(e) glag= U ;

Q

where Q is the fraction of turbulent contribution to ihe momentum transport

and is given by:
S gytey
0= | (g - 5 slae (3.53)

0o
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This turbulent contribution to the momentum integral will be neglected
in the k-¢ model because the model does not provide information about the
normal stresses g, go and gs,.

The left hand side of the equation (3.52) will be evaluated from the
similarity solutien; hence C can then be obtained by letting i=0 for the
plane jet or i=1 for the round jet.

To display the quality of the agreement, the result obtained with the
best-fit constants are presented together with the best available experimental
data. For the axisymmetric jet the most comprehensive measurements are those
of Wygnanski and Fiedler (1969). The more recent measurements for the round
Jjet using a new method are those of Abbiss et al.(1975) and Rodi (1975). For
the plane jet the comparisons;of the results are made with reference to the
experimental works of Bradbury (1965), Hekestad (1965), and Gutmark and
Wygnanski (1975).

For meaningfgl comparisons, of course, it is very important that the
measurements should have been performed at a cross section downstream where
similarity prevails for both mean and fluctuating quantities. This require-
ﬁent was not quite met in the case}of Abbiss et al. where x/d0= 30; this was
not far enough for the fluctuating quantities to achieve a self-preserving
state. However, it has been observed (Wygnanski and Fiedler 1969 among others)
that the mean velocity becomes self-similar at about x/d°5_30 so we can at
Teast use the Abbiss et al. data for comparison of the calculated and meas-
ured mean velocity profiles.

Near the outer edge of the jets, the relative turbulence intensity is
very high. As a consequence the measurements become increasingly unreliable
toward the edges. Hence the discrepency between the calculated and measured
profiles near the outer edge should not be attributed solely to the calculation.

The calculated mean and turbulent quantities for the plane and axisymmetric
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jet are plotted along with the measured profiles in the figures (3.3-3.14).
The similarity solution for the plane jet predicts the mean velocity and
kinetic energy profiles fairly well, as it can be seen in Figure (3.3) and
(3.4). The shear stress (EVVU%) has been calculated using the eddy viscosity
hypothesis (3.14) and (3.15). The result for the plane jet is shown in
Figure (3.5) which displays good agreement with the data.

Figure (3.6) shows the energy budget across the jet, and it can be seen
the terms in the energy equation are well balanced across the entire flow
field. There are no accurate measurements available for the terms in the
dissipation rate equation; however, from the calculated results, Figure (3.7)
shows that-the c-equation is fairly balanced. From Figure (3.8) it can be
seen that the calculated eddy viscosity (vt " kz/e) is constant over most of
the cross-section, and more importantly the ratio k2/s is well behaved at
the outer edge of flow as both k and € + o when ¢ ; ®,

For the round jet, Figures (3.9) and (3.10) show that the predicted mean
velocity and, in turn, the shear stress display fairly good agreement with
the data. The shear stress for the round jet was obtained in a simiiar way
as that for the plane jet. The kinetic energy profile as shown in Figure (3.11)
agrees with the data for £ > .06, but it is off by nearly 18% near the axis
(8=0). The reason for the energy 1oss near the axis of symmetry is due to the
high dissipation rate "¢" as it can be seen in the energy balance figure (3.12).
Figure (3.12) shows, however, that the kinetic energy equation is well in
balance for £ > .06.

The main errors in the prediction of the axisymmetric profiles are attri-
buted to the dissipation rate transport equation. From the balance of e-
equation (Figure 3.18) we can see that the equation is not nearly in balance
near the axis, and that the destruction term (Cszezlk) is too high near the

center line and too low at the outér edge. The production term (Cs]“t %g)
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seems to be too low to account for the destruction term near the centerline.
However, the production/destfuction terms approach the same order of magni-
tude for £ > .065.

Nothing much can be said about the diffusion term because there is not
enough information about the diffusion of e; and as stated earlier, changing
the constant Cu in the diffusion wi]l not change the final result because of
the change in the constants for the production/destruction terms, Cs] and Csz.

The kinetic energy profile calculated by Hanjalic and Launder (1980)
resulting from their improved k-c model also shows a loss of roughly 20% of
the energy near the axis in the axisymmetric jet. However, they did not
show any energy balance for either the plane nor the axisymmetric jet.

Figure (3.14) shows the eddy viscosity (vt n k2/e) for the round jet
across the flow. The shape of kz/e seems to be unaffected by the energy loss
near the center line and it is also behéving very nicely as £ - ». However,
unlike the two-dimensional case the ratio kz/s decreases very slowly as
increases at the edge of the jet.

Table (3.3) shows a comparison with the data of the spreading rate and
the centerline mean velocity decay rate for both plane and axisymmetric jets.
The spreading rate for both cases disp]ays good agreement with the data. The
values of the constant C seem to be overestimated as compared with the measured
values in both cases, i.e., the plane and round jet. This over-estimate,
however, is not an error in the calculation and it is only due to neglecting
the contribution of the turbulence to the momentum transport. However, we will
hold off further discussion of the constant C and the momentum conservation
- until we predict the jet flows using the Reynolds stress closure which solves

directly for all the non-zero components at the Reynolds stress.
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3.11 Concluding Remarks

From the foregoing results we may conclude that the k-e model with
the present set of constants (Section 3.7) has predicted the behavior of the
turbulent plane jet in the similarity region within the experimental accuracy.
The same can not be said, however, about the result of the axisymmetric jet,
since the solution did not converge properiy as it did for the plane case.
The result presented here for the round jet is the best that can be obtained
for the set of constants given in Table 3.2.

The lack of universality of the model constants and the error in the
energy profiles support the thesis of section (2.6) and (2.7) that CS] and
Cez might not be constants. In order for Ce] and CaZ to be universal they
must predict the flow for both cases, plane and round jet. So far there have
been no reliable measurements of the terms in the e-transport equation, thus
proper choices of the functional dependence of CE] and C¢2 is difficult at
the present time. The overall results obtained with the k-¢ model are indeed

encouragement to further~impkove-the model.
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Reference de c x/0
dx
Present study,
k-c similarity .1106 2.462
solution A
Bradbury (1965) .109 2.4 14-70
46;
-
[}
4
-
a
Heskestad a1 47-155
Gutmark and
Present study,
- k-e similarity .087 6.4
solution
Wygnanski and
« | Fiedler (1969) .086 ' 5.0* 20-98
S
<
[~
3
& | Rodi (1975) .086 6.0 20-75
|- Abbiss et al. .089-.1 5.5 20-30

Table 3.3 Spreading and Decay Rate Constants for Plane and
Axisymmetric Jet.

*The values of C have been obtained from the graphs which
are given by the authors.
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Figure 3.3 Mean Velocity Profile in Plane'Jet

(—) Similarity solution
(0) Gutmark and Wygnanski (1976)
(a) Bradbury (1965)

(---) Heskastad (1965)
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Figure 3.4 Turbulence Kinetic Energy in Plane Jet.
Notations as in Figure 3.2.
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Figure 3.5 Shear Stress Distribution in Plane Jet.

Notations as in Figure 3.2.

w
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Figure 3.6 Calculated Turbulence Energy Balance Across the
Flow in Plane Jet where:

C = convection, D = diffusion, P = production, DS = dissipation
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Loss

Figure 3.7 Calculated Dissipation Rate "c" Balance Across Self-Preserving
Plane Jet where:

¢ = convection, D = diffusion, P = production, DS - Destruction
of €.
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001 <«

X=X

Figure 3.8 Calculated Turbulence “eddy viséosity" Across the Flow
in Plane Jet (v, = C kZ/c).



67

Figure 3.9 Mean Velocity Profile in Axisymmetric Self-preserving
Turbulent Jet

(—) Simi]aritySSolution (k-¢ model)
(---) Abbiss et al. (Pulsed wire) (1975)
(---) Wygnanski & Fiedler (1969).
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Figure 3.10 Turbulent Shear Stress Across Axisymmetric X%o

Self-preserving Jet.

(~—) Similarity Solution (k-c model)
(o) - Wygnanski and Fiedler (1969)

(a) Rodi (1975)

(x) Abbiss et al. (Pulsed wire) (1975)
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Figure 3.11

Turbulence Kinetic Energy Profile in Self-preserving
Axisymmetric Turbulent Jet.

(=) Similarity Solution (k-c model)

(o) Wygnanski and Fiedler (1969).
(x) Rodi (1975).
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Figure 3.12 Calculated Kinetic Energy Balance Across Self-preserving
Axisymmetric Turbulent Jet, where:

C = convection, D = diffusion, P = production, DS = dissipation
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Figure 3.13 Dissipation Rate "c" Balance Across Self-preserving
Axisymmetric Jet, where:

C = convection, D = diffusion, P = production,
DS = destruction of «.
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Figure 3.14 Calculated Turbulent "eddy viscosity" Across
Self-preserving Axisymmetric Jet.
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CHAPTER 4

Application of the Reynolds Stress Model

4.1 Introduction

In Chapter 3, the p]ane and round turbulent free jets have been predicted
using the k- model closure.  As discussed earlier, a single set of constants
could not produce good results for both the plane and axisymmetric jets.
Further, the kinetic energy in the round jet was 18% lower than the data.

Our primary aim here is to reexamine the plane and round jet flows using the
Reynolds stress model and compare the results with available experimental data.
Here, unlike in the k-¢ model, the parameter in the destruction term of
e-equation (wo) which dictates the rate of the kinetic energy decay is a
function of the state of turbulence. Hence with ¥y = constant, ¥g will be
adjusted as a function of the turbulence Reynolds number and the first in-
variant of the anmisotropy tensor. Also the diffusion terms in the Reynolds
stress model are controlled by the parameter C] which will be part of the
calculatioh as a function of Re, II and III. It is expected that the para-
meters (:.l and ¥y with the fixed constants ¥y and ¢ are more likely to be
universal than the pure constants in the k-e model.

The equations of motion for the mean flow are given by equations (2.1)
and (2.2) and they are discussed in Appendix A for both plane and axisym-

metric jet. The stress equations are obtained from equation (2.67). 1In
‘Appendix D the Reynolds stress equations for each stress component have been
written in a cartesian coordinate system (plane jet). In Appendix E, the
equations for the Reynolds stress (2.67) has been transformed to curvilinear
form and the equations for the axisymmetric case have been written for x,

r and @ components. In Section (4.2) the equations for the stress compon-
ents and the dissipation rate have been arranged for a general free shear

flow, so that the extra terms arising in this axisymmetric case can be
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eliminated and the problem becomes two-dimensional. The equations for

the mean and turbulence qualities are then solved simultaneously for the
self-preserving jet. The centerline values of the stress components and the
dissipation have been updated after .each fteration. The final solutions

are compared with the existing experimental data.

4.2 The Reynolds Stress Equations

The governing equations for the kinematic Reynolds stresses for an
incompressible and isothermal turbulent flow are given in Appendix D for
the plane jet and in Appendix E for the axisymmetric case. After some

rearrangement the equations become:

' ?-Eggation

2 ’3? 2 2 - .2
u 3u 2 au 2 v_ 2 W
+ 2(C,+1) uv auv}1 -jL- 9-{C a;§.+ 3(C +1) z ij?
2 y 2 v 3y 2 3y
+v(c-2)v —31"_-—2:+2c a“"}-c 2+ 1 c-2)
2 3y 2 U 1 —2 U T3 \ymele
+ g(4C-1) uv ——-+ [- Zu + 4( - ¢cbqq) ;_j A
3 15 11 X
1 2 aV 2V
+40- I5 + clby #by3)1a° 2+ 4[- I5 + clby;#by3)Ia 7
cC, - —2
ia 02 2,22 _ 2
A [2 == q° (v¥ " - w" )] (4.1)
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w——

vz- Equation

2 T 2 7 — 7
Vv v 2 - 2 3v
Uy Vo [co — (¢, 3) Vet 3(C*3) v Y
+ (G, )ﬁ”zzm 4v“%] cﬂ—{cvi’E
- ay 2”5/ U e 2 9y
+ 3(C +1) ..‘Z + (C,-2) v ?.Zq- 2C. uv 3“"} -C _____VZ
2 3y 2 ay 2 1 "2'

] 4
+ .3- (C]‘Z)e = -5 (]+5C) =t 4{‘ 30 + C(b]‘|+b22)]q ax

——— —— - D w——y - —— —— —— ——

3)/

[4\30 - ¢cb 2)_2- —?j %%-* 4f- %5'+ c(b22+b33)];?.¥- i
[O) < 23R (1) . @ 16,27 22
Mt G S (T )1 - 450 & (Bt
y
(4.2)
wz- Equation
Z ol 2z A 2
3w M o3 e 9 22 2 3y_ W
U PV ey T ay LG o (G v gy * 36 v g+ (G*) v 5y
+ 2 Wﬂ}]q.ic z{(c£)7£+3(c-_2..\,2§l’_._2.
G w5y y S W3 v gy 275V 3
Wi — |
2 w_ 2y —— 3uv e 2.1 e
+ ((.‘.2 W + 2(C2-5-) uv -3;,—-} - C]a.z.w *t 3 (C] 2)e
i av
+4cuv =+ 4[- + c(bn+b33)] q2 aU + 4[- = + c(b22+b33)]q
— — . "l —2
2 2 S R q© 272 7
+ [-2 w + 4(35-- cb33)q ] v + 7 3y [2 Co < (C2+])(v wo-w" )]
cﬂ—()(nz) (4.3)



76

uv-_Equation
o T S T e
‘ 5 5 y

UV . youv _ 3
U+ V== = &
3y ay 3y y
- — Wi 5 5 —
8 2 3uv iec q¢ (—av- _ w 2 3uv
+EV sy—&] y Co {uv 3 w +2 3y }

7+50c 2 , 20c-2 2 , 2+20c 24 U
S T i [l B v

- Cy E==uv + [-
gVt
. 2 -
- o . TrikAA =V, _ i3 2., & 7.2
(1+2¢) uv X (1+2¢) uv 3y + 4c uv vy "yays Co o uv w
i E 8y — 2
-5C, 2 «(-5-) uv w (4.4)
y
¢ - Equation
—52
3 , e _ 3 9 E‘Z’ Ve Hive, de
Uu—+ L (vo + 2 ) =1
X dy 3y 514C1+§5+i05 € ai' 3y
— —2
. 2 —5 25 —2
i 9 q (2 V__tuv_y 3e
*y Saereo e (Ot 2 3 )3y}
3 U
"‘"oa"fe""1€b1z‘a}‘“4’1€b113£
Vi ,
Ve by 5y = ¥qe by (4.5)
where
0 For the plane jet
'i:
1.0 For the round jet
) u.u.
= dJ3_1 .
bis = =t -3 553 (4.6)
q
c ’—'(‘2'*6)‘2 (4.7)
2(C4-2)
R Nk (4.8)
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The above equations have been arranged so that they can be easily
applied to either the plane or the axisymmetric jet. Also the diffusion
terms are arranged so that the terms that are of the gradient type will be
treated implicitly in the numerical procedure, while the rest of the terms
including the production and rapid terms will be treated as source terms.
The underlined terms in the production and pressure strain part are second
order terms based on the order of magnitude analysis of Appendix D. However,
these terms might be of'importance, in particular near the axis of symmetry
where the leading terms in the production and pressure group vanish; hence
these terms and also the second order terms -in the mean momentum equations are

retained..

4,3 Boundary Conditions

a) Outer Boundary

At the outer boundary all turbulence quantities and their derivatives
(realizability condition) should vanish. The axial mean velocity also van-
ishes at the edge of the flow; the lateral component of the mean velocity

will be determined from continuity equation at y =‘y ().
b) Inner Boundary

The values of “i"j and ¢ at the centerline of the jet are not known.

The only source of information we have is that the flow considered is

symmetric and hence we require that:

Ule) = U,

Vo) = 0

w(o) = 0

2uZ

ay ()= 0 (4.9)
avZ,

sy o) = 0

)= 0

B L
5;(0) = 0
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~and also for the axisymmetric case we have

v*(0) = w*(0) - (4.10)
Equations (4.9) could be used directly as boundary conditions in the numerical
scheme, however, to maintain the control difference accuracy the continuity
and momentum equation will be evaluated at the centerline incorporating the
above conditions. The resulting set of equations will be solved simultan-
eously for ;zko), ;Eko), ;i(o) and <(o) along with the difference equations
evaluated at the other grid points. This will be discussed later when the

equations of motion are transformed to similarity variables.

4.4 Similarity Solution

The similarity analysis has been discussed in Section (3.5). Now let us

define the normalized kinetiC'eneréy of the turbulence and the dissipation by:

e = U3 ggln)/e (4.11)

e e s qz - Ug gG(n) .

(4.12)
where n = y/2 (x) and ¢ = /E;h which is used in the similarity equations.
If we substitute equations (3.18) - (3.20), (4.11) and (4.12) into the

equations for mean and turbulent quantities we ohtain the foliowing set:

Continuity:
Blewer - Lighn) =0 (4.13)
g€
Momentum:

i+ : R T . o
LI+ eff - nf -7 () + (41)gygp) + Elg-g,) = 0 (4.14)

Reynolds Stresses:

[ : ] g
)+ Loy g+ (55) ] g+ L0#1) 7 - € 321 6 9

A 95 = dm (4.15)



where

and where -

ko = (5o%6)
9
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0 m#%$n
Gmn = )
- 1.0 m=n
(Cz+1)92 3C,9,
.2 3
(C; -39,  3(Cx*3)9,
€9, 36,9,
3 4
594 594
C2% 3(Cx*1)e,
€29, 3(Cyt1)e,
2 2
0 9
e, -2)
36
Xe,-2)
s
He,-2)
3
0

%*
Repeated subscripts imply summation.

]

1,2,3,4
1,2,3.4

(4.16)

(4.17)

(4.18)
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- § (ac-1)g,

+ 3 (1450)g,

4Cg4 f
_ 7450¢C 20C-2 2+20C
- T -7 St Tl
-2q, + 4(d=cb..)
1 15 <211/9
at- %’o‘ + c(byytbyy)leg | :
(”" £+ Ef )
4- 5 + by #bye)Tog
- (1+20)g,
4[‘ Jj‘d""' C(b-”"‘ b33)196 [" Ix t C(b1]+b33)]gs
1 ]
4[‘1‘3‘ - Cb22]96 - 292 ' 4[- 30 + C(b22+b33”96 h
h - - i
£
1 1
40- 35 + clbyytbzs) Igg -295 + 4(=y5 - cby3)9g
- (1+2c)g, - 4cgy
ccC |
072
2"‘§§" 95(92'93)93 0
C Co% . 2 16
. ( 096) i
Cg ‘ g 2
0”6 - | 16 5 &
2 s (C,+1)(9,-95)95 = (9,-93)9,
g
. 2 “0%6 | .8
375 9% | 5 9493

(4.19)
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Dissipation "Rate" Equation:

'L i \ 3i+5 95
(k5595) + ('g‘ 255 + Ef‘h)gs + ( N f - ‘Po “9’6")95

where
’ % %*%

= = 9 v

k55 = *55 = STaC,obeI0) (g) (%2 * g

]

h

™ |_i+] s ; 1 no.
dg = 9y95lb),F' - SHfref') + byyh' + bys =1

- Centerline Values of the Reynolds Stress

dg (4.20)

(4.21)

(4.22)

By transforming the boundary condition (4.9) to similarity variables

we obtain:
f(a) = 1
f'(0) = 0
h(0) = 0
gi(0) = 0
g,(0) = 0
g3(0) = 0
94(0) = 0
g9z(0) = 0

(4.23a)
(4.23b)
(4.23c)
(4.24a)

(4.24b)

(4.24¢)
(4.25a)

{4.25b)

When the continuity and momentum equations (4.13) and (4.14) are evaluated

in the limit £-+0, we get

n'() = 3

5,(0) = L+ 4,0) - g,(0)

(4.26a)

(4.26b)

Now let us evaluate the Reynolds stress equation at centerline. By

substituting- the above condition in equation (4.15) we get:
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1-1 " : g
S ™ e D

%135 % 9 n 95 7 d

m
(4.27)
For the shear stress component 94 (m=4 in the above equation) all that
is left is: |
93(0) =0 (4.28)

On the other hand, for the normal stresses 91> 9, and gq (m=1,2,3, and n=1,2,3,),

equation (4.27) becomes:

]‘i i : 95 -
[k + 8770 25,0 ap + [(i41) - ¢4 -g-e—] Sun I * Ap Jg = dm (4.29)

The coefficients kmn’ zmn

evaluated from (4.16-4.19) by letting £+o. The dissipation equation when

and xm and the source terms dm will be

eﬁa]uated at £=0 takes the form:

1=-1 "oy [3%+5 -

| 9g |
255] 95 ]gs - d5 (4-30)

(kgg + ¢ 0 gg
where ke gss/and dg are obtained from equations (4.21) and (4.22). Hence
equations (3.29) and (3.30) provide four equations which can be solved
simultaneously to obtain the centerline values of the normal stresses 995 9o

and.g3 together with the dissipation rate of the turbulence kinetic energy 9s5-
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4.5 Model's Parameters

The kinetic energy decay rate function Yo and the return to isotropy

parameters are given by equation (2.27) and (2.46) which can be rewritten

as:
]4 » --5
Vo = g—-+ .98[1-1n(1-5511)] exp (-2.83 Rz ) (4.31)
= 1 -.5
C1 = 2.0’+ (9 + 3 III + I1)[72 Rz

+ 80.1n(1+ 62.4 II + 2.3 III )] exp (- 7.77 Rz-'s) (4.32)

The turbulence Reynolds number Rz is defined by equation (2.17). It

can be written in terms of the similarity variables as follows:
' 2

36 ‘ (4.32)

Uz
R = —— (o
995

A v

If we substitute for the centerline mean velocity Um and the turbulence
length scale ¢ their respective similarity definitions (3.26 and 3.42),

equation (4.32) becomes:

2 .
ud a,C g 1-1i
=00 17 "6 X,
Rz > 3 p (do) (4.33)
or

where Re is the jet exit Reynolds number.

As we can see from the proceeding equation, the turbulence Reynolds number
will depend on the jet exit Reynolds number for both the plane and round
jets. Furthermore, Rz will be a function of x in the two-dimensional flow
case. Hence Yo and 01 will be functions of the downstream position. This

of course, contradicts the similarity formulation which assumes that all
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variables in question will be functions of the similarity variable n only.
It turns out, however, in the jet calculation, that Yo and C1 dependence on
the Rz is rather weak. It has been observed in the present calculation
that changing the turbulence Reynolds number by 50% only changes the final
turbulence profiles by 1-2% with hardly any change in the mean velocity
profiles.

For the present calculations we let
2
R, = RET (9-5-) (4.35)
L 95 ‘ *

U d

(4.36)

RET = T‘(d

and RET is kept constant for either case plane or round. For the round jet,
x disappears from the above equation, while in the plane jet we simply
choose an average value for g—-from the experimental data (see Table 4.1).
The remaining parametersoof this model are ¥ which appears in the
production term of c-equation, ¢ in the rapid terms and finally b, the
relaxation parameter in the diffusion terms. These, however, will be taken

constant in the current calculation, and assigned the values that are given

in Table 4.1.



u.d
R = —

Flow { x/d C 3 P ¥ c
Round Jet - 6.0 .09 87000 2.0 -.15
Plane Jet 100 2.4 1 24000 2.0 -.15
Table 4.1 Reynolds Stress Model Constants

The jet exit Reynolds number was based on Rodi (1975) experiment for
the round jet, and on Heskestad (1965) for the plane jet. The constant in
the centerline decay law C and the jet growth rate a, are assigned the

values shown in Table (4.1) which are average values of the observed data.

4.6 Numerical Solution

The system of equations (4.13), (4.14), (4.15) and (4.20) constitutes

a closed set of ordinary differential equations which are sufficient to

solve the seven unknowns, U, V, uz, vz, w2

equations is not a trivial matter, and the outcome of the solution will depend

, uv and ¢. However, solving these

on how the various terms in stress and dissipation equations are treated in the
computation. For example, in the application of the k-¢ model, the production
terms have been linearized, and treated implicitly in the calculation; this

worked fairly well. On the other hand, the production and pressure strain
terms in the stress model which include the mean velocity gradients,
involve a lot of terms as compared to the k-c model. Hence it seems to be
more reasonable for the computation to treat these terms explicitly and add
them to the source terms. All the other terms that involve the gradients of
the Reynolds stress components and the dissipation terms will remain implicit
in the calculations.

The system of equations cited above are quasi-linearized in a way similar

to that used in the k-< model solution. They can be written as:
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M) glg s o™ e Ty =0 (4.37)

. i+1.1 i+] iy g
Cli+n)g fo + g 7 F 1f + (67 f - hg')f -g fh

+ (141)g'(9,-9,) + £ (g7-0,) - (5'g,)"

S BLAR (e gy (4.37b)

oy pepe] Vo
(kndn) "+ D& 2, + (ef-h)s 1) g -

: 9g -
# L = € 2 Loy 9y + (g 95 = (4 (4:37€)

31+5

' : g
1 s =1 : ] - 5 -
(k5595) + [ig 155 + €f'h]o 95 + [ﬁf" f L §;]0 95‘(d5)0

where the "o0" subscript indicates that the quantity is fixed for that cycle
of the iteration process and evaluated from the'previous iteration. In the
early stages of the computation the stress equation (4.37c) and the dissi-
pation equation (4.37d) were solved simultaneously for the stress components
and the dissipation rate; then with the shear and normal stresses known,

the momentum (4.37b) and continuity (4.37a) equations were solved for the
mean flcw-velocity components U and V. It was, however, difficult to get a
smooth mean velocity profile near the centerline. This is because that when
the gradient of the shear stress(which is the most dominant term in the
momentum equation) increases or decreases slightly, the resulting change in
the mean velocity profile is noticeable. It was decided to solve the set
of equations (4.37) simultaneously using the difference scheme of Append{x F.
This method solves for the unknowns at three nodes point simultaneously, as
previously mentioned in the k-¢ model appliéation.

To start the computation, the eddy viscosity solution in Appendix C was

i

used as an initial guess with u~ = v W= %-q . Those profiles, however,

(4.37d)
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were taken for ¢ 2 &g (see Appendix C). For £ < Egs the profiles were
approximated so that they take values reasonably close to experimental data
at the’centerline of the jet. The model parameters C1 and Y, were initially
assigned the values (3.25)and (3.8) respectively, and then they were updated
using equation (4.31) and (4.32) after each iteration.
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4.7 Results

The calculated mean and turbulent profiles are plotted versus the
similarity variable (£=§) and are shown in the figures 4.1-4.15. The
- results are compared with the most recent data of Abbiss et al. (1975),
| Rodi (1975) and Wygnanski and Rodi (1969) for the round case. For the
plane jet comparisons the data of Bradbury (1965), Heskestad (1965) and
Gutmark and Wygnanski (1976) are used. Table 4.2 summarizes the flow
constants of turbulent free jets for both plane and axisymmetric flows.

a) Mean Velocities

Figure 4.1 and Figure 4.6 show the calculated distribution of the

- normalized axial components of the mean velocities for both plane and
round jets while figure 4.11 displays the distribution of the normalized
lateral component of the mean velocities across self-preserving jets.
Not much need to be said about the shape of the mean profiles because
their behavior is well known and they agree fairly well with the data
within the experimental accuracy of the measured values.

If we now take a ;1osek look at the mean velocity profiles and test
whether the momentum integral constraint (3.27) is satisfied or not then
~we need to bring the decay rates of the mean centerline velocity of the

jet into the picture. (See equation B25). This is an important point
~which has been raised by Baker (1980) (see also George et al. 1981).
For example, Figure 3 of Wygnanski and Fiedler's experiments (1969)
gives C = 5.0 while in Rodi's latest work (1975)Figure 8 gives C = 6.0.
On the other hand their normalized mean velocity profiles are nearly iden-
tical including the spreading rate. (see Table 4.2). Obviously if one of
the above cited experiments satisfies conservation of momentum, the other

will not.. This point will be discussed in some detail in Chapter 5.
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dg R = Yo @y | x
Flow Reference ax C v Um max do
%* 4
Bradbury (1965) not 2.4 3x10 .0242 14-70
. constant
Heskestad (1965) 1 - .47x]04 .021 47-155
-3:7x104
Gutmark & 4
Plane Wygnanski (1976) .102 2.306 3x10 .024 120
Jet
Present Results
k- model .1106 2.46 - .022 -
Reynolds stress 12 | 2.82 | .a7x10t 100
Wygnanski & 5
Fiedler (1969) .086 5.0 10 .0165 20-98
Rodi (1975) .086-.09 | 6.0 | 8.7x10% | .0186 | 62-75
Round | Abbiss et al. 89-.1 | 5.5 | 5.75¢0% | 0221 | 20-30
Jet Present Results
k-¢ model .087 6.4 - .021 -
Stress model .095 5.8 8.7x10% | .0198 -

Table 4.2 Flow Constants for Turbulent Jet Issuing in Still Air.

*
For Bradbury's experiment U
velocity at the outer edge

;

/Up = .16, where Up is the free stream
f the jet.
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b) Stress Components

Figures 4.2, 4.3 and 4.4 show the variation of the normal components
of the Reynolds stress across self-preserving axisymmetric jets. The cal-
culated profiles are seen to be in fair agreement, within a few percent.
the experimental data of Wygnanski and Fiedler (1969) and Rodi (1975),
hereafter referred to as reference I and reference II respectively. A
Tittle disagreement between the data of reference I and II is seen in
lateral and azimuthal components of the Reynolds stress in particular near

the jet axis. It seems also from figure 4.2-4.4 that either the calcul-
ated profiles are overestimated or the measured data are underestimating
the result at the outer edge. The shear stress profile for the round jet
is compared with the data of reference I and II and Abbiss et al. in
figure 4.5. The Reynolds stress similarity solution gives higher value
of the maximum shear stress as compared with I and lies between the values
of reference II and the data of Abbiss et al. Otherwise the calculated

shear stress for the round jet is well behaved over the entire region.

2

2,2
e W /Um for the

On the other hand the normal stresses ;7}u§, ;E}U
plane jet are in disagreement in the region for £ < .1 as seen in the
figures 4.7, 4.8 and 4.9. For example, in the central core of the jet
the values observed by Bradbury (1965) of ;2}U§ is lower by as much as 50%
than that of Gutmark and Wygnanski (1976) and about 25% lower than the
data of Heskestad (1965). On the other hand, Bradbury observed a value
of'ci}U$ which is 30% higher than that given by Gutmark and Wygnanski.
Here we have to note that Bradbury's jet exhausted into a: parallel stream
which was moving at .16 of the jet exhaust velocity. So if we exclude
Bradbury's result from comparison the discrepancies between Heskestad and
Gutmark and Wygnanski will be sufficient to raise the question about the

reliability of the data. The calculated profile as seen in the figures
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4.7-4.9 agree we11 with the data for £ > .1 and takes an average value of
the above data for £ < .1. However, we recall that the agreement between
the data and calculated profiles for the turbulence kinetic energy

(k = %-(;ﬁ;;i;;§5/U§ was fair in the k-¢ model result. The turbulent shear
stress for the plane jet is shown in figure 4.10. The above data are in
fair agreement while the similarity solution underestimate the shear stress
near ¢ = .] but agrees well with the data near the centerline of the jet
and for ¢ > .1.

c¢) Dissipation Rate “c"

For the plane jet the dissipation level of the kinetic energy of tur-
bulence as predicted by the k-¢ model and Réynolds stress simi]arity solution
are in good agreement as seen in figure 4.14. We recall that energy and
dissipation rate equations have been shown to be well balanced (Chapter 3).
For the round jet the calculated dissipation rate using the k-c¢ model is
higher at the centerline of the jet and lower for £ > gss than that given
by the Reynolds stress solutjons. This error in the dissipation rate for
the k-¢ model was a result of the model constants as mentioned earlier.

d) Model Parameters

The calculated values of tha'function'$o for the decay rate of turbulence
kinetic energy and the parameter C1 in the return to isotropy term of the
Reynolds stress equations are shown in figure 4.12 for both plane and axi-
symmetric self-similar jets. As it can be seen from figure 4.12,, de-
creases slightly as we go toward the outer edge and it is nearly equal for
both plane and round jet. In the same figure the variation of C1 is shown,
whfch,in fact, shows an interesting behavior. At the jet axis for both
cases,plane and round jet,C] takes a value of about 3.5 which is close to

the value: suggested by Lumley (1978). Then ¢4 increases to a maximum of
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4.8 for the round jet and 6.4 for the plane jet at £ = .08. The variation
of the turbulent eddy viscosity (vtm ;ie/e)across the jet is shown in

Figure 4.13. The shape of vy as obtained from the stress similarity solution
is somewhat simi]ér to that obtained in the k-¢ model solution except here
v, s seen to decrease at about ¢ ¥ .1 while in the k-c model formulation

the ratio q2 /e decreases at about ¢ ¥ .2 as bothlgz and ¢ vanish at the
outer edge of the jet. The C] decreases only gradually as £ - ». The
difference in magnitude of C1 for the plane and axisymmetric jet is due to

the variation of first and second invariant of the isotropic tensors

(see figure 2.4).

4.8 Conclusion

The mean and turbulent profiles obtained using the Reynolds stress
display satisfactory behavior in both flows, plane and round jets when fhey
were compared with the data. The model constants y, and c has been taken
as suggested by Reynolds (1976), namely ¥y = 2 and c = -.15. This choice
of ¥ and ¢ seemsto work best for the turbulent jet. A similar behavior has
been observed in the turbulent wake calculations (see Taulbee and Lumley
1980). If we increase ¥ slightly the kinetic énergy of turbulence increases
while the turbulent shear stress decreases. On the other hand ¢ controls
the pressure strain terms in the Reynolds stress equation. Changing c
slightly is seen to affect the normal components of the Reynolds stress
more than the turbulent shear stress. In previous theoretical work,
Launder and Morse (1976) found that the spreading rate of the jet is 50%
higher than the observed values. However Launder and Morse used only
constants in their Reyholds stress model. They indicate that the difficulty
in the computation arises from dissipation eugations. In the current cal-
culation this behavior is not observed. The spreading rate which has been

calculated using the Reynolds stress similarity solution is somewhat higher
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than the data but not by far as much as it is found in Launder and Morse's
calculations.

The discrepancies in Launder and Morse's results might not be attributed
to the source-sink term in the dissipation equation as indicated by the
authors ,but is likely due to their mode] for the transport terms.

The results of the present model which is well behaved for both
plane and round jets indicate that the return to isotropy function C1 which
is used in the diffusion transport as well,varies considerably across the
jet (see Figure 4.12),while the Launder and Morse model uses a pure constant

for the diffusion transport which is based on computer optimization.
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Figure 4.1 Mean Velocity Profile of Turbulent Round Jet

(o) Abbigs et al. (Pulsed wire)(1975)
(x) Wygnanski and Fiedler (1969)
(=) Reynolds Stress Similarity Solution
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Figure 4.2 Axial Component of Reynolds Stress for the Round Jet

(0) Rodi (1975)
(x) Wygnanski and Fiedler (1969)
(-) Reynolds Stress Similarity Solution.
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0 .1

Figure 4.3 Radial Component of Reynolds Stress for the Round Jet.

Notation as in Figure 4.2
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0 .1 .2
Figure 4.4 Azimuthal Component of Reynolds Stress for the Round Jet.

Notations are the same as in Figure 4.2.

&y
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Figure 4.5 Shear Stress Profile for the Round det

(o) Rodi (1975)

(a) Abbiss et al. (Pulsed wire)(1975)
(x) Wygnanski and Fiedler (1969)

(—) Reynolds Stress Similarity Solution



C’C

99

Figure 4.6 Mean Velocity Profile for Plane Jet

Bradbury (1965)
Heskestad(1965)
Gutmark and Wygnanski (1976)

Reynolds Stress Similarity Solytion

X<
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Figure 4.7 Axial Component of the Reynolds Stress for
Plane Jet.

Notations are the same as in Figure 4.6.
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X
Figure 4.8 Vertical €omponent of the Reynolds Stress for

Plane Jet.
Notations are the same as in Figure 4.6
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Figure 4.9 Horizontal Component of the Reynolds Stress
for Plane Jet.

Notations are the same as in Figure 4.6
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0
Figure 4.10

t

.1

Shear Stress for Plane Jet

The notations are the same as in Figure 4.6
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Figure 4.11

Radial Mean Velocity Profile of Turbulent Free Jets
(=—) Plane Jet, (---) Round Jet
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7.0
Plane Jet
\
6.0
Round Jet
5.0_

4.04

3.0

Round Jet

o
- —— ——,
—— —

-ﬁ:—-n-—\'"
Plane Jet /

v ¥

0 ‘ . 2 y

X
Figure 4.12 Variation of Reynold Stress Model Parameters Across
Self-preserving Turbulent Jet

(—) The return to isotropy function (Cy)
(=+=), (====) Kinetic energy decay function Vg
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0 .1 .2 y

X
Figure 4.13 Calculated Variation of Turbulent Eddy Viscosity
Across the Self-preserving Jet

(---) Round Jet, (—) Plane Jet
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Figure 4 14 Calculated Dissipation Rate of Turbulence
Kinetic Energy Across Plane Jet.

(—) (k-¢) model similarity solution
(~~-) Reynolds stress similarity solution
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Figure 4.15 Calculated Dissipation Rate of Kinetic Energy

of Turbulence for Axisymmetric Self-similar
Turbulent Jet

(==} (k=) Model similarity solution
(-==) Reynolds stress similarity solution

x|


http://www.tcpdf.org

‘e o* inghiall )l

4

DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Higher order closure model for turbilent jets 1Ulgasll
Seif, Ali A. t ool gl

Taulbee, Dale B.(Super) to>] aslio

1981 1S3>l 2y, U

g 18990

1-168 1olxaall

618359 :MD 3,

&zol> Jlw, ' Sgizall g9

English :axlll

ol)eiSs alluw, ragolell as)all

State University of New York at Buffalo 4ol

Faculty of the Graduate School \\\\\\\\\\\\\\t :a sl
&,55,0V b3zl LVl :égll

Dissertations 1logleoll aclgd

wlyplall dlwiid @ug StV wlowldl (Olixo )l (a>ieddl BS ol IV [P
https://search.mandumah.com/Record/618359 ol

‘ ‘ bgaxo dgaxll gaex anghiall ls 2019 ©
83ladl 04n aclb ol Juoss 2liSoy abgino il Foi> ganz 0l lale il Bei> ool go gdsall SVl (ale sl aslio b3kl 0id
ol (o s gupas Ugs (csueSIVl ayl ol oyl gdlge Jio) awws Si ae il ol Jugmidl ol G| giovg «asd (sasidl plasiwil

Aoghiall ,ls of il Bgi>

ol Lalu Zyl_ﬂbl

www.manharaa.com



https://search.mandumah.com/Record/618359

109

CHAPTER 5

Momentum Balance Consideration

5.1 Introduction

The development of turbulence models relies heavily on experimental
data in order to determine the model parameters and constants. It is there-
fore essential to have reliable experimental results against which the pre-
dicted values can be compared. Figures (4.1) and (4.6) show that the calcul-
’ated and measured mean velocity profiles in the far field of plane and round
Jets are in fairly good agreement. The discrepancies are mostly at the outer
edge of the jet; they are, however, significant with respect to the conserva-
tion of momentum for the axisymmetric jet since, unlike the plane jet, the
largest contribution to the momentum integral comes from the region £ > 0.05.
This is illustrated in Figure (5.3) which shows the momentum balance for the
round jet.

Based on the analysis of C. B. Baker (1980) all the measurements for
the axisymmetric jet‘might be seriously in error since they fail to conserve
momentum. He argued that, due to the high intensities of turbulence at the
outer edge of the jet, the hot wire measurements are unreliable. He assumed
that the measured values at the centerline of the jet, where the intensities
are not as high, should be more likely to be correct.

In the present study we have considered the self-similar axisymmetric jet,
and the plane jet as well. The measured mean velocity profiles are in fairly
good agreement when they are normalized with their respective centerline values.

(Note that ah excepfion to this is the experiment of Abbiss et al. with a pulsed
wire technique. This may be attributable to the fact that the experiment

was performed for x/do < 30, where the jet may not be quite self-similar.)

The major discrepancies in the measurements for both plane and round jets

appear to be in the variation of the mean velocity at the centerline,

see Figure (5.1) and (5.2). This m%ght lead us to assume that the loss
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momentum is due to uniform errors in the measurement of the jet mean velo-
city throughout the flow, and at the centerline in particular, since the
experimental data yield nearly the same values for the spreading rate for

the respective cases; plane or round jet (see George et al. 1981).

- 5.2 Momentum Integral

"~ In Appendix A the equations for the mean motion of isothermal, in-

| compressible and self-preserving turbulent jet have been discussed in some

detail. Based on order of magnitude analysis for high Reynolds number thin
shear flows, the mean momentum equations have been approximated. If we re-
tain the second order terms the integrated momentum equation across the

flow reads:

27 f [l + o8 - LI gy - (5.1)
Q
where
i .2 90 .14
M o=or U (=) (5.2)

Recall that i=0 corresponds to two-dimensional and i=1 for the round jet.

Equation (5.1) can be written in similarity form as:

o ) 2

2 97951 _ 5 Uy do iy
f [f u""”g'[ SRS ]5 & = 2 i+] (1'+'l) (5-3)
5 2Um [

By substituting the expressions for % and Up from equation (3.26) and (3.42c),

equation (5.3) takes the form:

2 95%93] 1, 1,i+
f [F" + 9y - =57 ¢ de = v (337 (5.4)

[+]
where C is the proportionality constant in the decay law for the centerline

mean velocity of the jet.
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For the plane jet, the momentum integral constraint becomes
2¢2 f [0 + g, - 9,1dg = 1.0 (5.5)
[o}
and for the round jet, we have
: g g
2 f (% + g, - S2lede = 1.0 (5.6)

0

In the éﬁuations (5.5) and (5.6) we have included the turbulent contri-
bution to the momentum integral. The net contribution of the turbulence to
the momentum amounts to ébout 8% of the total momentum added at the source.
(see Tables (5.1) and (5.2)).

5.3 Momentum Balance

For any experimental data to be reliable it must satisfy the momentum
equation (i.e., equation 5.1). This seems not to be the case in most re-
ported experimental data.

The measurements of Wygnanski and Fiedler (1969) represent the most
comprehensive attempt to characterize the axisymmetric and fully developed
jet. The same can be said.about the measurement of Gutmark and Wygnanski
(1975) for the plane jet. For comparison with the above data, Rodi's (1975)
and Abbiss et 317(1975), measurements wf]] be used for round jet; the data
of Heskestad (1965) and Bradbury (1965) will be used for the plane jet. The
éeported mean and turbulence profiles of the above experiments has been
integrated graphically and the results substituted into equation (5.5) for
the plane jet and in equation (5.6) for the round jet. The values of C in
the above equations are either reported by the authors or have been obtained

from Figures (5.1) and (5.2).

*
Abbiss et al. measurements were only for x/d < 30 where the jet

is not quite self-preserving, hence compar1sons apply only to the mean
velocity profiles.

In Bradbury experiment the free stream velocity is not zero, hence the flow
is strictly speaking not self-similar.{see Hinze 1975).
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The results are shown in Table (5.1) and (5.2) for the round and plane
jet respectively, along with the similarity solutions obtained earlier. The
loss of momentum is in range 2-30% of the total momentum in the plane jet and
up to 40% for the round jet.

This is sufficient to raise a serious question about the accuracy of
the experimental measurements. The reported values of C are in the range
5.0-6.0 for the round and 2-2.4 for the plane jet. The discrepancy in the
constant C between Rodi's data and those of Wygnanski and Fiedler, as it can
be seen from Figure (5.1), is largely for x/d > 60. Note that Rodi only
measured to x/d = 75 while Wygnanski and Fiedler measured to x/d0 = 100.
Hence it is not quite clear whether either set is self-preserving and which
is the most reliable. At the final stages of this study, S. Capp (1981)
obtained C = 6.25 using laser Doppler anemometer in the laboratory at SUNYAB
and showed that the measured velocity profile up to x/d0 = 120 satisfies

| momentum. These date were obtained too late to be analyzed further here.
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Figure 5.1 Variation of the Mean Velocity Along the
Centerline of an Axisymmetric Jet.

(o) Wygnanski and Fiedler (1969).
(x) Rodi (1975).
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Figure 5.2 Variation of the Mean Velocity along the
Centerline of the Plane Jet.

(0) Gutmark and Wygnanski (1975)
(x) Heskestad (1965)
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Figure 5.3 Momentum Balance for Self-preserving
Axisymmetric Jet.

(1)- Efz, (2) - £9q» (3) - 5(92+g3)/2 from Wygnanski and Fiedler
(4)- Momentum integral evaluated from Rodi's data.

(5)- Momentum integral evaluated from Wygnanski and Fiedler's
data.
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CHAPTER 6

Summary and Conclusions

In the past decade considerable efforts have been given to the develop-
ment of the second order models of turbulence. Much success has been
achieved in predicting various classes of turbulent flows. Particularly
noteworthy are the predictions of Rodi and Spalding (1970), Rodi (1972),
Hanjalic and Launder (1972), Reynolds (1976), Launder and Morse (1979) and
most recently Hanjalic and Launder (1980) to name but a few. In the majority
of the above, second order prediction methods the model constants have been
“"tuned" to fit the respective experimental data (e.g. jets, wakes, mixing
layers, etc.

In the present study, for that matter, the k-¢ model calculation is no
exception. As stated earlier the diffusion constants in the k- and e-equa-
tioq:)must be related so that g, = 20k. By making this modification the
constants in the production/destruction terms of the dissipation rate equa-
tion,—cel and CEZ, have to be tuned to fit the experimental data. It has
been concluded that the set of constants which predictrthe flow for the plane
Jjet do not do so for the round jet. This is the best that can be done for
the k-¢ model at the present time. However, our main objective here 1in
applying the k-¢ model was to test several numerical schemes that have been
developed for the Reynolds stress closure model. For the set of constants
proposed (Table 3.2) the k-e model predictions agree well with the experi-
mental data. This, however, does not imply that the choice of the model
constants is final, or that they are constant at all.

In the preceeding chapter {Chapter 5) it has been shown that the majority
of the experimental data are in error and hence not reliable. Because of

this uncertainty in the measurement there has been no attempt to "tune" the



119

model constants in the application of the present Reynolds stress closure
model to obtain better agreement with the measured values. Rather, the
emphasis in the work has been to determine what the model predicts with
objectively determined universal parameters and constants. In order for
any model to predict unknowﬁ flows, it must be universal in nature. Hence
the model parameters must be functions of the Tocal state of turbulence
which is the case in the present closure model. The return to isotropy
function C,c which also controls the diffusive transport of E;E} is a
function of the turbulence Reynolds number and the local anisotropy.

There were wide views about the values of 01 in previous calculations.
For example, Zeman and Lumley (1976) suggest C] = 3.25. Other values sug-
gested were 5.6 by Hanjalic and Launder (1972), 6.7 by Wyngaard and Cote
(1974), 3.0 by Launder, Reece and Rodi (1975), and 2.5 by Reynolds (1976).
Zeman and Tennekes (1976) obtained seven different values of C] between 1.8
and 3.8 by examining seven different homogeneous turbulence experiments.
From the present result (Figure 4.12),* the variation of C1 as a function of
Ri ;‘II and III covers nearly all the above suggested values for this para-
meter. This lends credence to the view that ¢ is a un{versal function.
The variation of wo, the barameter that controls the kinetic energy decay
(to be compared with C€2 in Launder et al. formulation), is not too large
across the jets in the present calculation or in the wake calculation of
Taulbee and Lumley (1980). This suggests that the discrepancies in the
Reynolds stress results of Launder and Morse (1979) are not entirely due to
the effect of Cez (Launder notation), but rather to the constant used in

the diffusion term in their calculations.

*
The functional behavior of C, seems to be similar to that seen by Taulbee
and Lumiey (1980) in their wakes calculations.
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The remaining model parameters (present model) are Y1 the constant
in the production term of e- equation,and c, the constant in the pressure
strain terms. These were assigned fixed values. For turbulent free shear
flows Reynolds (1976) suggested y; = 2.0 and ¢ = -.15. These values appear
to give reasonable results in both the round and plane jets. The lack of
reliable measurement data makes the choice of ¥y and ¢ difficult at the

present time.


http://www.tcpdf.org

‘e o* inghiall )l

4

DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Higher order closure model for turbilent jets 1Ulgasll
Seif, Ali A. t ool gl

Taulbee, Dale B.(Super) to>] aslio

1981 1S3>l 2y, U

g 18990

1-168 1olxaall

618359 :MD 3,

&zol> Jlw, ' Sgizall g9

English :axlll

ol)eiSs alluw, ragolell as)all

State University of New York at Buffalo 4ol

Faculty of the Graduate School \\\\\\\\\\\\\\t :a sl
&,55,0V b3zl LVl :égll

Dissertations 1logleoll aclgd

wlyplall dlwiid @ug StV wlowldl (Olixo )l (a>ieddl BS ol IV [P
https://search.mandumah.com/Record/618359 ol

‘ ‘ bgaxo dgaxll gaex anghiall ls 2019 ©
83ladl 04n aclb ol Juoss 2liSoy abgino il Foi> ganz 0l lale il Bei> ool go gdsall SVl (ale sl aslio b3kl 0id
ol (o s gupas Ugs (csueSIVl ayl ol oyl gdlge Jio) awws Si ae il ol Jugmidl ol G| giovg «asd (sasidl plasiwil

Aoghiall ,ls of il Bgi>

ol Lalu Zyl_ﬂbl

www.manharaa.com



https://search.mandumah.com/Record/618359

)
3
i

ABSTRACT

This dissertation addresses the problem of predicting the flow field
of self-preserving turbulent jets. It identifies the lack of universality
of second order closure models with constant coefficients. It has been
shown that the diffusion constants in the k-¢ model,s, and o_,must be
related so that g, = ch in order to have an asymptotic solution. Based
on this modification a set of constants for the (k-¢) model has been
proposed.

Following Lumley (1978),a second order closure model with variablé
coefficients has been developed. In this formulation care is taken to satisfy
realizability, non-negative quantities are never negative and Schwarz's
inequality is satisfied.

An analysis of existing data for simple decaying anisotropic axi-
symmetric turbulence shows that the return to isotropy function C1 depends
on the turbulent Reynoids number and the first and second invariants of
the anisotropy tensor. The form proposed for C1 by Chung (1978) is shown
to violate realizability condition.

The equation for the Reynolds stresses and the dissipation rate equation
are transformed to curvilinear coordinate system for the axisymmetric jet.
The similarity'fgrms of the closed Reynolds stress and dissipation rate
equations along~w1th the equations for the mean flow are solved numerically
to determine the equilibrium behavior of the two-dimensional and axisymmetric
jets. A numerical scheme that solves the system of equations at each grid
point simultaneously is introduced. It turns out that the model with the
same set of parameters and constants predicts the flow for both round and
plane jets equally well.

Review of the existing measurements for the plane and round jets show

that the majority of the reported experimental data are in error, since they
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fail to conserve momentum. The lack of momentum balance seems to be primarily
attributable to the error in the centerline measurements, and not entirely to

the profile shape as eralier suspected {Baker 1980).


http://www.tcpdf.org

*o o iinghiiall jla
. DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Higher order closure model for turbilent jets 1Ulgasll
Seif, Ali A. t ool gl

Taulbee, Dale B.(Super) to>] aslio

1981 1S3>l 2y,

g 18990

1-168 1olxaall

618359 :MD 3,

&zol> Jlw, ' Sgizall g9

English :axlll

ol)eiSs alluw, ragolell as)all

State University of New York at Buffalo 4ol

Faculty of the Graduate School \\\\\\\\\\\\\\t :a sl
&,55,0V b3zl LVl :égll

Dissertations 1logleoll aclgd

wlyplall dlwirid @ug SV wlowldl (Olixo )l (d>iwddl BS ol 1Raolg0
https://search.mandumah.com/Record/618359 ol

abga=o Jgs=ll gro> .dnglhioll jls 2019 ©
s3lall 0id aclb of Jioz LiSey .albgazo il Bod> gao ol lele o i olrol go &gl SVl (e sl a>lio dslall 0in
ool o s 2usai Vs (g xSIVI 3yl of iVl gélgo Jio) éliws S ue il of Jugmdl ol Fowill ginyg daad wsvazill plassowd
Aoghioll s of ,uinl Sgi>

www.maharaa.com



https://search.mandumah.com/Record/618359

Acknowledgements
Abstract
List of Tables
List of Figures
Chapter

1

TABLE OF CONTENTS

Title

Introduction

1.1
1.2
1.3

Background
Theoretical Models

Scope and Object

The: Reynolds Stress Closure

2.1
2.2
2.3
2.4
2.5

2.6

2.7
2.8
2.9
2.10
2.1
2.12
2.13
2.14

Equations for the Mean Flow
The Reynolds Stress Equation
The Kinetic Energy Equation
The Dissipation Rate Equation

The Reynalds Stress Closure
Approximation

A Modal for the Dissipation
Equation

Decay of Isotropic Turbulence
Determination of ¥y

Return to Isotropy
Determination of CT

The Rapid Terms

Transport Terms

Transport Terms for ¢

The Final Form of the Reynolds
Stress Closure

Page No.

de

iv

11

14
16
19
20
22
25
28
31

32



Chapter

TABLE OF CONTENTS (cont.)

Title

The Two Equation Models

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.1

Introduction

The Eddy Viscosity Concept

The k-¢ Closure Model

The Final Form of the k-e¢ Model
Similarity Formulation
Quasi-Linearization

The "finite" Difference Equations
Similarity Solution

Proposed Model Constants

Results and Discussion of the
k- Model

Concluding Remarks

Application of the Reynolds Stress Model

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Introduction

The Reynolds Stress Equation
Boundary Conditions
Similarity Solution

Model's Parameters

Numerical Solution

Results

Conclusion

Momentum Balance Consideration

5.1
5.2
5.3

Introduction
Momentum Integral

Momentum Balance

Ne.,

o

34
34
36
37
38
46

50
53

54

73
74
77
78
83
85
88
92



Chapter
6

References

Appendices
A

TABLE OF CONTENTS (cont.)

Title

Summary and Conclusions

Equations of Motion for the
Mean Flow

I. Plane Jet

II. The Axisymmetric Jet

Analytical Solutions
I. The Plane Jet
II. The Axisymmetric Jet

Initial Profiles

Reynolds Stress Equations in
Cartesian Coordinate Systems

Reynolds Stress Equations in
Cylindrical Coordinate System

Numerical Scheme

Page No.
118

121

130
135

139
140
142

144

149

156

166
166


http://www.tcpdf.org

‘e o* inghiall )l

4

DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Higher order closure model for turbilent jets 1Ulgasll
Seif, Ali A. t ool gl

Taulbee, Dale B.(Super) to>] aslio

1981 1S3>l 2y, U

g 18990

1-168 1olxaall

618359 :MD 3,

&zol> Jlw, ' Sgizall g9

English :axlll

ol)eiSs alluw, ragolell as)all

State University of New York at Buffalo 4ol

Faculty of the Graduate School \\\\\\\\\\\\\\t :a sl
&,55,0V b3zl LVl :égll

Dissertations 1logleoll aclgd

wlyplall dlwiid @ug StV wlowldl (Olixo )l (a>ieddl BS ol IV [P
https://search.mandumah.com/Record/618359 ol

‘ ‘ bgaxo dgaxll gaex anghiall ls 2019 ©
83ladl 04n aclb ol Juoss 2liSoy abgino il Foi> ganz 0l lale il Bei> ool go gdsall SVl (ale sl aslio b3kl 0id
ol (o s gupas Ugs (csueSIVl ayl ol oyl gdlge Jio) awws Si ae il ol Jugmidl ol G| giovg «asd (sasidl plasiwil

Aoghiall ,ls of il Bgi>

ol Lalu Zyl_ﬂbl

www.manharaa.com



https://search.mandumah.com/Record/618359

HIGHER ORDER CLOSURE MODEL
FOR TURBULENT JETS

BY

ALt A, SerF

A DISSERTATION SUBMITTED TO THE FACULTY
OF THE GRADUATE SchooL oF STATE UNIVERSITY
OF NEW Yorx AT BUFFALO IN PAPTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Docror oF PHILOSOPHY

Rt e e A ey

Septeveer 1981



DEDICATION

TOMY PARENTS



ACKNOWLEDGEMENTS

The author wishes to express his gratitude to his advisor, Professor
Dale B. Taulbee whose kindness, human understanding, help and excellent
guidance made this accomp]ishment possible, Special thanks are due to
Professor William K. George for his valuable suggestions and comments in
reviewing this thesis and making numerous corrections.

My thanks and appreciation are also due to the Saudi. Arabian Govern-
ment for the financial support they provided during the entire period of
my graduate study. Further I would 1ike to thank certain members of the
Saudi.. Arabian Ministry of Higher Education, Riyadh University, and the
Saudi.. Arabia Educational Mission in Houston for their cooperative effort
and understanding.

A very special thanks goes to my wife for her patience and encourage~-
ment, my sons Raied and Abdulatif and the rest of my family in Saudia
Arabia for their moral support.

Appreciation is also extended to Mrs. Eileen Graber for her capabie

typing of this thesis.



Acknowledgements
Abstract
List of Tables
List of Figures
Chapter

1

TABLE OF CONTENTS

Title

Introduction

1.1
1.2
1.3

Background
Theoretical Models

Scope and Object

The: Reynolds Stress Closure

2.1
2.2
2.3
2.4
2.5

2.6

2.7
2.8
2.9
2.10
2.1
2.12
2.13
2.14

Equations for the Mean Flow
The Reynolds Stress Equation
The Kinetic Energy Equation
The Dissipation Rate Equation

The Reynalds Stress Closure
Approximation

A Modal for the Dissipation
Equation

Decay of Isotropic Turbulence
Determination of ¥y

Return to Isotropy
Determination of CT

The Rapid Terms

Transport Terms

Transport Terms for ¢

The Final Form of the Reynolds
Stress Closure

Page No.

de

iv

11

14
16
19
20
22
25
28
31

32



Chapter

TABLE OF CONTENTS (cont.)

Title

The Two Equation Models

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.1

Introduction

The Eddy Viscosity Concept

The k-¢ Closure Model

The Final Form of the k-e¢ Model
Similarity Formulation
Quasi-Linearization

The "finite" Difference Equations
Similarity Solution

Proposed Model Constants

Results and Discussion of the
k- Model

Concluding Remarks

Application of the Reynolds Stress Model

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Introduction

The Reynolds Stress Equation
Boundary Conditions
Similarity Solution

Model's Parameters

Numerical Solution

Results

Conclusion

Momentum Balance Consideration

5.1
5.2
5.3

Introduction
Momentum Integral

Momentum Balance

Ne.,

o

34
34
36
37
38
46

50
53

54

73
74
77
78
83
85
88
92



Chapter
6

References

Appendices
A

TABLE OF CONTENTS (cont.)

Title

Summary and Conclusions

Equations of Motion for the
Mean Flow

I. Plane Jet

II. The Axisymmetric Jet

Analytical Solutions
I. The Plane Jet
II. The Axisymmetric Jet

Initial Profiles

Reynolds Stress Equations in
Cartesian Coordinate Systems

Reynolds Stress Equations in
Cylindrical Coordinate System

Numerical Scheme

Page No.
118

121

130
135

139
140
142

144

149

156

166
166



)
3
i

ABSTRACT

This dissertation addresses the problem of predicting the flow field
of self-preserving turbulent jets. It identifies the lack of universality
of second order closure models with constant coefficients. It has been
shown that the diffusion constants in the k-¢ model,s, and o_,must be
related so that g, = ch in order to have an asymptotic solution. Based
on this modification a set of constants for the (k-¢) model has been
proposed.

Following Lumley (1978),a second order closure model with variablé
coefficients has been developed. In this formulation care is taken to satisfy
realizability, non-negative quantities are never negative and Schwarz's
inequality is satisfied.

An analysis of existing data for simple decaying anisotropic axi-
symmetric turbulence shows that the return to isotropy function C1 depends
on the turbulent Reynoids number and the first and second invariants of
the anisotropy tensor. The form proposed for C1 by Chung (1978) is shown
to violate realizability condition.

The equation for the Reynolds stresses and the dissipation rate equation
are transformed to curvilinear coordinate system for the axisymmetric jet.
The similarity'fgrms of the closed Reynolds stress and dissipation rate
equations along~w1th the equations for the mean flow are solved numerically
to determine the equilibrium behavior of the two-dimensional and axisymmetric
jets. A numerical scheme that solves the system of equations at each grid
point simultaneously is introduced. It turns out that the model with the
same set of parameters and constants predicts the flow for both round and
plane jets equally well.

Review of the existing measurements for the plane and round jets show

that the majority of the reported experimental data are in error, since they
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fail to conserve momentum. The lack of momentum balance seems to be primarily
attributable to the error in the centerline measurements, and not entirely to

the profile shape as eralier suspected {Baker 1980).
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CHAPTER I

Introduction

1.1 Background

Jet engines, wakes behind airplanes and submarines, mixing layers,
water disposal in rivers, chimney plumes and all kinds of motion in the
atmosphere are a few examples of turbulent free shear flows which the
engineers and the meteorologists as well, wish to predict. There are,
in fact, many other flows of practical importance that need not to be
boundary free as in the above flows. Examples of these flows are channel,
pipe, and boundary layer flows. However, the process of free turbulent
mixing is prominent in all these flows. Hence the theory of free shear
flows, in general, applies to these flows as well.

The above classical flows have Tong been favorites for turbulence
- investigators because of the easy manner in which they can be generated
in the laboratory. Another important characteristic of these flows, is
their tendency to become fully developed and se]prreserving'(at least in
principle) after a certain development region. This ehables theoretical
investigators to approximate the eduations of motion based on physical
grounds,such as order of magnitude analysis.

At the turn of the century the advances in the study of turbulent-flow
problems were made primarily in the laboratory where basic insights into
the general nature of turbulent flows were developed and the behavior of
selected families of flows were studied systematically. For engineers and
meteorologists there were only a limited number of useful tools, such as
boundary layer prediction methods which salve the momentum integral equation
with a high empirical content. Turbulent flow features such as sudden

changes in boundary conditions, separation or recirculation could not be
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predicted by these early methods with any degree of reliability. Hence
empirical work remained an essential ingredient in many engineering analysis.

Halfway into this century the computer began to have a major impact on
engineering éomputations and the development of a theoretical model capable
of predicting turbulent flows with a fair degree of accuracy began to
attract many researchers in this field.

The exact equations that»govern turbulent flows are well known; they
are the Navier-Stokes equations. These equations, which are accepted as the
fundamental basis for turbulent flow problems, are non-linear and strongly
coupled; hence, an analytical approach leading to closed form soluytions is
not possible. Procedures exist to solve these equations numerically. How-
ever, the energy-dissipating eddies are so small that the computational
mesh required must be so fine that realistic calculations cannot be carried
out with present day computer hardware. Therefore it is customary to con-
sider statistical properties of turbulence, which is often sufficient in
providing engineers with the required information. This approach, however,
~ Teads to an infinite number of correlation equations that govern the turbul-
ence properties. |

- A practical way to close the system of equations is to employ a turbul-
ent model which approximates higher order correlations (moments) in terms of
Tower order moments that can be calculated. This approximation relies heavily
on experimental data to determine the model empirical constants and functions.
Therefore a reliable set of experimental data must be provided to serve as

a basis for any theoretical prediction methods.

1.2 Theoretical Model

The turbulence models are classified either according to the number of

partial differential equations they employ for turbulent quantities or by the

order of the moment for which the transport equations are written.



The first turbulence model which has been applied to turbulent free
shear flows with some success, is Prandtl's (1925) mixing-length hypothesis.
This simple model relates the turbulent shear stress uniquely to the local
mean velocity gradient. Then the partial differential equation for the
mean flow is transformed to ordinary differential equations for which an
analytical solution can be obtained. (see i.e. Appendix B) This model,
among others of its class, often breals down in many situations when there
is more than one mechanism present, preducing, in general, more than one
length ep velocity scale.

A second order model is expected to work better in most situations
because it carries transport equations for second order quantities, so
that many of the mechanismé responsible for the production of those quan-
tities are represented accurately. Kolmogorov (1942), Prandtl (1945),
Chou (1945) and Rotta (1951) laid the foundation for second order models
of turbulence. However, analytical solutions for the resulting system of

equations could not be obtained and a numerical one was not possible at

that time. |

By the early 70's when advances in combuters and numerical methods
overcame the mathematical difficulties, séveral predictions of turbulent
free shear flows had been made with a fair degree of accuracy. Among the
reported models are the (k-¢) model proposed by Jones and Launder (1972),
(k-kz) model by Rodi and Spalding (1971) and the (k-w) model by Spalding
(1972). However, these prediction methods use model constants which were
thought to be universal, but the calculations showed that they are not.
For example, a set of constants that predict the flow for plane jets will

not do so for the round jet.



Furthermore the two equation model used the eddy viscosity concept
(e.qg. Vg v k2/e),hence they do not keep track of the dynamics of all the
second order correlations of importance. This led to the idea (Donaldson,
1971; Hanjalic and Launder, 1972b; Bradshaw, 1972) that the most promising
class of turbulence models for making numerical calculations of such complex
flows is that based on the solutioh of the approximated equations for the
Reynolds stresses E;ig'and indeed several proposals have been made (see

section 2.4).

1.3 Scope and Object

In the past decade considerable success (Lumley and Khajeh-Nouri, 1974;
Launde},\Reece and Rodi, 1975; Reyﬁo]ds, 1976 and Hanjalic and Launder 1976)
have been made in predicting shear layer, jet wakes, channel flows, and
boundary layers with reasonable degree of accuracy. - There were, however,
some unexplained differences between calculated and measured turbulent
quantities.

These discrepancies arise from the neglect of §ome correlation terms
in the governing equations, incomplete or inappropriate closure formulations
for other correlations or simply not having the optimum values for the co-
efficients in closure formulations which may be functionally correct. For
instance a set of constants in the closure formulations that gives good
results for one flow situation sometimes does not work well for another flow.
This is the case with the predictions for the two-dimensional and round jet
flows (Launder and Morse, 1979).

Although some fundamental guiding principles, i.e. invarient modeling,
have been used in formulating c?os&re relations, much is developed by ad.hoe
assumptions. With appropriately adjusted constants some of these ad hoe

closures have performed admirably well. However, one would Tike to develop



closure formulations from first principles using rational procedures. Also
it would be highly desirable that the model parameters and constants be
determined as part of the calculation, or at least, determined from certain
"key" basic experiments. Furthermore, closure formulations and the resulting
theory should not violate certain mathematical or physical principles, e.g.
conservation of mass and momentum.

Using a rational approach, Lumley. (1978) formulated a second order model
that is an orderly expansion about a homogeneous, stationary turbulence, the
large scales of which have a Gaussian distribution. In this formulation care
is taken to satisfy realizability conditions. This condition implies that
non-negative quantities are never negative and Schwarz's inequality is
satisfied. The key coefficients in this closure relation are functions of
the local turbulent Reynolds number and anisotropy.

The primaky aim of this dissertation is to consider the above closure
formulation and investigate the functional form of the model parameters based
on the available data for a homogeneous decaying axisymmetric turbulent flow.
The closed Reynolds stress and dissipation equations are transformed to curvi-
linear coordinates for the use in the axisymmetric jet calculations.

The similarity forms of the resulting system of equations for plane and
axisymmetric flow are solved numerically to determine the equilibrium behavior
of turbulent (isothermal) fully developed and self-similar jets. The results
are compared with available experimental data with the emphasis on conserva-
tion of momentum.

C. B. Baker (1980) raised the question about the validity of the axisym-
metric jet measuréments, since they failed. to conserve momentum. He analyzed
the data of Wygnanski and Fiedler (1969) for an axisymmetric self-preserving
jet and argued that the measured mean velocity profile conserves only half

of the momentum added at the source. (See also George, Seif and Baker, 1981).



On the other hand the most recently measured and calculated profiles are
fairly in good agreement with Wygnanski and Fiedler profiles when they are
normalized with their respective centerline value of the mean velocity.
Hence part of this study (chapter 5) is devoted to examination of the jet
data (plane and axisymmetric) in contrast with the results of theoretical

predictions.



CHAPTER 2

The Reynolds Stress Closure

2.1 Equations for the Mean Flow

The equations that gcvern the mean motion of an incompressible
isothermal turbulent flow are obtained from the Navier-Stokes equations.
By decomposing the instantaneous velocity and pressure into a mean and tur-
bulent component and by taking the time average of all terms, the following
equations will result (see Tennekes and Lumley 1972).

Conservation of mass:

Ui,i =0 (2.1)

Conservation of momentum:

pl;

3 U

FolU, o= =P, + (s . - pUUD),s 2
oUsUs 5 P, (uU1’J pUsU5) s (2.2)

where the overbar denotes the time average, the overdot stands for the

partial derivative with respect to time and the subscripts after the

al,
commas denote the partial differentiation,eg.ui j© 5;1. The new
unknown puiuj in the momentum equation is the contribution of the tur-

bulent motion to the mean stress tensor. It is known as the Reynolds
stress in honor of Reynolds who first developed equation (2.2) in (1785).
The Reynolds stress pﬁ?ﬁs'has nine components and hence introduces nine
unknowns to the equation of motion; however,since it is a symmetric tensor
GIF;; =‘E;E;)‘the number of unknowns is reduced to six, three normal
and three tangential components. |

The aim of any prediction method in turbulent modeling is to solve
the momentum equation fof Ui,but because of the presence of G;E; in the

momentum equation, the system of equations in (2.1) and (2.2) do not consti-

tute a closed set. Closing this set of equations has been of major concern



for over a century. An earlier closure, which is known today as the zero
order model, was origina!]y proposed by Boussinesq in 1877. This simple
closure model assumes that the shear stress is proportional to the mean
velocity gradient. This approximation predicts the velocity and shear
stress profiles for thé self preserving turbulent jet (see Appendix C)

with a good degree of accuracy over most of the flow region, but it fails

to do so when the turbulence is in non-self-preserving state. However, with
the advances of electronic facilities researchers have tried to develop a
universal method to predict the Reynolds stress accurately. The most direct

m——

way to determine “iuj’ of course,is to solve a transport equation for all
non-zero components of the Reynolds stress. Such an equation, in fact,

does exist and it will be discussed in the following section.

2.2 The Reynolds Stress Equation

A transport equation that governs the Reynolds stress can be derived
in the following way. The eguation for the component i of the instantaneous
velocity (Ui+“i) is multiplied by uj and the equation for the j component
Uj+uj) is mu1tip11ed‘by Us. Summing of the two equations and taking the, time

average yields the desired equation for ui“j (see Hinze,1959):

— P
P U Uy H g (g Py )

i pressure strain

i
(i) = convection ii) = production (iii)

P

(iv) = diffusion

- 2 Vv ui,kuj,k (2.3)

(v) = dissipation



As it can be seen from equation (2.3),further unknowns, such as the triple
correlation and pressure velocity correlations, have been introduced.
This, of course, adds to the complexity of the situation. Transport equa~-
tions for the third order statistical moment G;U;ﬁ;'can be again derived
in a way similar to the above; however,the number of unknowns will grow
faster than the number of equations. Closing the system in equation (2.3)
at the second order level (the Reynolds stress closure) will be discussed

later in this chapter.

2.3 The Kinetic Energy Equation

For future reference let us take a look at the turbulent kinetic energy
equation. Contraction of equation (2.3) leads to an important equation,

the kinetic energy equation of the turbulence:

2 2 "7""'75

Ty ey T luylate 20 g - Zuguy Uy g r 2o lugug 5
(i) (i) (ii1) (iv)
- 2v uj ,J i.i (2.4)
(v)

—

where q aAG;G;Z

Equation (2.4) states: The change in (i), the turbulent kinetic energy
per unit mass and unit time including the convection transport by the mean
motion, is equal to (ii),the convective diffusion by the turbulence of the
total mechanical energy or the work by the total dynamic pressure of the
turbulence, plus (iii),the work of deformation of the mean motion by the
turbulence stresses, plus (iv),the work done by the viscous stresses of the
turbulent motion, plus (v), the viscous dissipation by turbulent motion. To
close the system of equations (2.2) and (2.4) at this level, which is known

in the literature as the one equation model, the terms on the right hand
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side of equation (2.4) will be approximated employing the eddy viscosity
concept and specifying a characteristic Tength scale (see Reynolds 1976).
However, if we go one step further and derive an additional transport equa-
tion for the dissipation e,then we have the so called two equatidn model.
This model eliminates the need forlspecifying a characteristic length scale
as functionzof position throughout the flow by defining the eddy viscosity

as Vg q2 /e. A detailed discussion of this model and its application

will be presented in Chapter three.

2.4 The Dissipation Rate Equation

An exact transport equation for the dissipation rate of turbulent kinetic
energy (i.e.,the correlation v ”i,z“i,z)
Stokes equations for the fluctuating velocities by appropriate differentia-

can be developed from the Navier-

tion, multiplication and averaging. The resulting equation can be written

as (see Daly & Harlow 1970):

) 2
e+ Uke’k = ‘2 Vv ui’kui,juk,j - 2 (Vui,jk)

(1) (i1)

e —
“(uge + 22Uy P g ve ) g

(ii1)

'2 V(U1,juk’j + uj,iuj,k) Ui,k

(iv)
-2 Vukui,j u (2.5)

(v)

i,Jk

It is an extremely difficult task to consider equation (2.5) in its entirety.
Luckily for high Reynolds numbers flow (i.e. most of the turbulent flows)

a great simplification will result when an order of magnitude analysis is
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employed (Tennekes and Lumley 1972). The terms (i) and (ii) which re-
present the generation of ¢ by the stretching of vortex filaments, and the
destruction through the tendency of viscosity to reduce the instantaneous
velocity gradients are the most dominant terms. However their difference,
which really matters is nearly the same order of magnitude as the transport
terms (iii). The terms (iv) and (v) are smaller than other terms by at

1/2
Re

least a factor of ,where Rz is 'the turbulent Reynolds number; therefore,

these terms can be safely ignored. Hence equation (2.5) can be written as

: e (TTe2 Y
e + Uke,k = (uke +2 > p,iuk,i),k
(i)

"2
=, 2 Vui’kui,juk’j - Z(Vu,i ,jk)

(i1) (iii) (2.6)

Still the terms on the right hand side of equation (2.6) add further unknowns
into the equation set governing the Reynolds stress. These terms are not
directly accessible to measurement and therefore their approximation can

be only verified indirectly by determining whether the predicted distribu-
tion of ¢ is consistent with the measured variation of the turbulent kinetic
energy through a particular shear flow. Modeling of the transport terms,(i),
and production-destruction terms,(ii) and (iii),in equation (2.6) will be

included in the analysis of the Reynolds stress closure.

2.5 The Reynolds Stress Closure Approximation

The Reynolds stress model begfhs with the equations (2.1), (2.2), (2.3)

and (2.6). In order to solve equation (2.3) for Ujuy,some information about

the higher order moments uiuj“k andPui j must be provided. Those terms

will be approximated as functions of the lower order moments. Such approx-

jmations will rely heavily on experimental data to determine the proportionality



12

constants and certain key parameters.

The idea of proposing a model like (2.3) was first suggested by
Rotta (1951). Some predictions have been recently made following this idea
by Daly and Harlow (1970), Reynolds (1970) Donaldson (1971), Noat, Shavit and
Wolfstein (1972), Hanjalic and Launder (1972) and Lumley and Khajah-Nouri (1974),
to name a few. However there have been widely different views on how to treat
the third order moments, the triple velocity correlation in particular.
Before we proceed with the analysis of closing the Reynolds stress equations,
-a new arrangement of the terms involved in equation (2.3) will be made. For
convenience in later analysis we will separate the effects of the various
terms to be modeled and group them according to their rules and functions
in the equations of motion.

An expression for the pressure can be obtained by taking the divergence
of the Navier-Stokes equations for the fluctuating velocity component uj-

The result is (Lumley, 1978)

-.-LL— =2 |

coUs s P Us Us s o= Uslls s 2.7)
p T,JUJ,T u133u391 u1quTJ (

The right hand side of equation (2.7) contains two types of terms. The
first term is linear in the fluctuating velocity and related to the mean
velocity gradients while the second and third are nonlinear in the fluctua-

ting velocity. If we conveniently split the pressure such that

(1)
P ..
AR
- T2y My | (2.8)
(2)
P ii
- e 2 . Ue o = Uslle o= 2.9
> Ui 343,17 YiY5,45 (2.9)

where the correlations with p(1) and its gradients are known as the

"rapid terms". While the correlations with p(2) are known as the
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APPENDIX A

Equations of Motion for the Mean Flow

The dynamic equations that describe the mean motion for turbulent
free jets are obtained from Navier-Stokes equations (Section 2.1).
Equation (2.1) and (2.2) are written in cartesian tensor notation. In
this appendix the equations for the mean flow will be presented in
component- form for the plane and axisymmetric turbulent free jets. An
order of magnitude analysis will be performed based on physical grounds.
By integrating the mean momentum equation and by using the continuity
equation to eliminate the cross stream mean ve]ocity the momentum integral

constraint will result.

I. The Plane Jet

For two dimensional turbulent free jet of an incompressible isothermal
fluid, issuing in still surrounding, the equations for the mean motion are
obtained from equations (2.1) and (2.2). For steady motion (—E =0) the

equation can be written in cartesian components as follows:

Contﬁnuitz:
aU aV BN .
ax ay 3z =0 (AT)
;-gggentum:
i — _—
CLURYY: | Y| R - 2, _ 3u_ _ 3uv _ duw
Ux * Yoy T ¥z o ax TV - o 3y ax (A2)
y-momentum:
—_ 7
av v V. _1ap 2y _ 3uv _ 3v_ _ aww
bx*Vay *¥z -5y " W7 V-5 "% "3z (A3)
Z-momentum
oW W W _ _13P 2, _ WU _ 3WV _ 3w
U vi? tHr s T VWS 3y 9z (A4)
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For the plane jet the following assumptions are made;

i) There is no mean motion in the z-direction.

ii) A1l derivatives with respect to this z-coordinate are zero.
iii) The shear stress uw and vw are zero.

Applying the above ass&mption equation (A4) becomes
%4P-J%=o
which states that P - p;f is a function of x and y only, The equations
(A1-A3) reduce to;

ULV

NP0 (A6)
-

LU L R N ] 2y . 2u_ | Buv

xtYy "ot YWl-5 -y (A7)
— 2

oV w3V . _ 1 2y . 2y _ 3V

bx * Yoy TR TR (A8)

0bvious1} the principal mean velocity in the jet flow is the axial
component U and hence the x-momentum is the principal equation of motion
for the mean flow. However, we have to examine the cross-stream momentum
equation (y-momentum) and analyze each term based on its order of magnitude
relative to the leading terms.

Let us consider the region far away from the jet exit, i.e., when the mean
flow becomes almost parallel and the boundary Tayer approximation are applic-
able. In the far field of the flow we can identify two velocity scales and
two length scales. (See Figure (Al1)). Let L and 2 be length scales in the
x- and y-direction respectively and let Um be the mean velocity scale

and u is some characteristic turbulent velocity scale such that;

x=o(l) , y =o0(2) , o = ve = Wl

1
=
n

o(uz) , U=o0 (Um)

[}

and from conservation of mass V Um(%).



132

Jet's exit
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Figure Al. Schematic Diagram of the Two Dimensional Jet and Coordinate System.
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Where the "o" stands for order of magnitude. Hence the terms in the

y-momentum can be scaled as follows:

2 2, — 2
2V 8V 1P, 37V a7V, 3w S
X Yy oyt ('—'2' yz) " 3
2 2 2 2
U u ] 2 U
L 2
B2+ (2B (2) U——[(—) + (015 o (“)() Do) 2
m
(A9)
In most free turbulent shear flows where the turbulent Reynolds number
U g
R2 = -%}- is relatively high we have;
(9% - (&) << 1.0 (A10)
m
and
1 .10 | (A1
el )

L

Hence by neglecting higher order terms in Cﬁ—)z and (%Q the terms
| m
that will be retained in equation (A8) are the first terms on the right

side of the equation because nothing can be said about this term except -
that it must be of the same order of the last term in the equation. There-
fore we must have,

——

2

13 v

If we integrate equation (A12) with respect to y, differentiate the
resulting equation with respect to x and substitute into equation (A7) the

pressure is eliminated and the momentum equation becomes:

- - 2 2
al U _ 8 2.2 _auv 3U Uy
e B 6T - BT )

Using order of magnitude analysis similar to the above it can be shown
- that the first and last terms on the right side of equation (A13) for first
order approximation are negligibly small compared to the rest of the terms

for the flow considered. So, the momentum equation can be approximated as:
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ol 1) aguv}
U5§-+ vay 3y (A14)

Momentum Integral Constraint

Assuming that we retain all the terms in equation (A13) but the

smallest term ( ) then we have,

2
au U . 3 2y L suv _ 3%
%ﬁ*"w*axw -V Sy "2 2 (A15)

if we make use of the continuity equation the momentum equation

becomes ;
2 — 2
auT L auv _ 2y L euv _ U
T 3)’ BX (U ve) + 3y 3 (A16)

We integrate equation (A16) across the jet to obtain;

®

z[ e u? -l dy = - 2w | -aw

Q o] o}

8
8

-]

18
+2\)'5-y-

[o]

Since the terms on the right side of the equation vanish at both limits,

the momentum integral becomes,

g;-f (U2 +uf - vz)dy
o]
Integration with respect to x leads to:

0 (A17)

»

2 j 2 + 6% - )y = M /o (A18)

0
0

where Ho is the momentum added at the source and defined by

- 118
My = oUgd, (A19)
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/

II. The Axisymmetric Jet

- The equations that govern the mean motion of an axisymmetric

pressible and isothermal turbulent flow are given by

Continuity:

13 1aw, au_
rar (V) +oggta =0
r-momentum
& W _1ap, o2 V2 oMy 1a 2
at " r ar V(7Y 22 58) " ar
2
La_om -2 @ + o
r 55 (M) - g% (W) + 3
g-momentum:
dW W _ _113p 2 2 3V 12
dt-r " "orser v(TW-T 2 38 " ras "
3 3 = WY
- 57 (w)- = () - 2 =
x-momentum:
‘ du #, 2 w13 ,— 3 (=
Sl vVU--a-)(-'F'a'F(Y‘UV)“"aé’(uw)
where
d .3,y W3 .3
d xtertrE Tt U
Vz-.-.a.z._. +J-§-+] 32 +—3-
3r2 rar PT;-Z 3X2

incom-

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

For the round turbulent jet with no swirl the symmetry requires that the

azimuthal component of the mean velocity W and the shear stress uw and wv

are zeros and all derivatives with respect to the azimuthal coordinate ¢

are identically zero. Hence the system of equations (A20)-(A23) for

steady motion (%f = 0) becomes
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<— (ruv) (A28)

Using the same velocity and length scales as in the two dimensional

case replacing r by y, the terms in the r-momentum equation (A27) will be

approximated as follows:

2 2 -5
C1 AT Sl @y L,y vy 13 (2
Vr * Ux -oaw’ “(;:f *var ;?9 o ()
2V g U 2 v .
92 m, (42 m 2k 8y (3l M w2
© T+ (7)) e e @07 -G s
v . v
X r
2 2
U U
“p2em, w2 m
Again, if the second ordeﬁ terms are ignored, i.e. terms of order
2 2
(%QZ or (%)(!29 and when R¢ = -%— is sufficiently large enough, all that
U
m
is left in the r-equation is,
‘%%%*%%;("V)“g-” (A30)
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The first term on the right can be integrated by parts so that

P

-p i i
=P _7+va;w

(A31)

0

Differentiating equation (A31) with respect to x with P, = const we

have, .
R -
p ax X 5}}_ dr (A32)

- With equation (A31) the pressure can be eliminated from equation (A28)

and the mean momentum equation becomes;

2_2
U . yau . _ 13 3 vo=w 2
U+ Wy = - P V>'F3F(”‘V)'sz‘f dr +v770 - (A33)

r
Once again if we apply the order of magnitude analysis to the terms

in equation (A23) and retain up to the second order terms and neglecting

viscous terms the momentum equation becomes,

—_—— ”"2?"7
ol U 3 2 2 13 —— ) Vo-w
U-é—)z-i-V*é—r-;*--a—-(u-V)-Fﬁ-(Y‘UV)-‘é';f F dr (A34)
r

However as it will be seen later that the contribution of.the first
and last terms on the right side of equation (A33) to the mean momentum

is insignificant and for most practical problems the momentum equation

reduces to
”aU au__13 )
ax * Var rar (uv (A35)

The Momentum Integral Constraint

Multiplying equation (A33) by r and integrate across the jet (from O

to =) making use of the continuity equation (A26) we have,



oa .

9 =
+[ & war = 0

°  (iv)

The terms (ii) and (iv) integrate to zero and term (i11) can be

integrated by parts so that;

— ) [ — ca—

2 272 2 277
(i) = [ |- ) o
r Q o'
> 27

<
[}
3

2 - I 5 rdr
) .

Then the momentum integral becomes;

. 2 2
! [U2 + ;2.- !—éﬂ—ﬂ rdr = 0
0

D-’D.

X

or at any cross section downstream we must have,

2, 2 2
znf[uz +»;7-L§i-3 rdr = M_/o
Q
as a requirement for conservation of momentum where
2.2
U
M =7 odo
0 I

WY_ dr rdr

(ii1)

U0 is the jet exist velocity and dois the jet exit diameter.

(A36)

(A37)

(A38)

(A39)

(A40)
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APPENDIX B

Analytical Solutions

An analytical solution for the non-linear set of ordinary differential
equations that result from the similarity formulation in the applications
of the (k-¢)- and stress-models (Chapter 3 and 4) is not feasible at the
present time.

However in the similarity region the eddy viscosity (vt N kzls) is
constant across the flow except at the edge of the shear layer (Tennekes
and Lumley (1972)).

The calculated ratio (kZ/e) is in support of the above statement as it
can be seen from figures (3.8)and (3.14). Based on this fact and if we

neglect the second order terms in the momentum equation (3.35) we can write;
n

a2 e Lo ol el s e rgh'ei a0 o)

o}

where the eddy viscosity hypothesis is given by,
= - 2 '
gy = -(C K/g)f (82)

and the momentum integral constraint can be expressed as follows:

® 2 ‘
] .
2 1i 0 d (i+1
f Fnldn =~ 31 (37 (83)
) m ¢ ‘ )

The parameter a (the similarity constant) can be
eliminated if we let £ = VEﬁn.
\ In the above notation i=o0 correspond to the plane jet and i=1 for
the axisymmetric case.. [Now by taking Cu KZ/E as constant equation (B1)
can be integrated directly and a close form solution can be gbtained for

both plane and axisymmetric turbulent jet.
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I. The Plane Jet

In this case (i=0) the momentum equations becomes

T (Fsf f fdg) +1(c K/ )11 = 0 (84)

and the momentum integral is;

o 2
u d a
[ fldg = —>— (=) (B5a)
' 2U
o m
where
L= apx (B5b)

Now if we assume that the centerline velocity is governed by the following
decay law:

d 1/2
u=cu(d (B6)

where C is an empirical constant. Then the momentum integral becomes;

-

f 24z = —-‘—2- (87)
2¢
Q
Let ys define
£
6(e) = [ fle)ae (88)
Q
or
G'(g) = f(g) (B9)

with the following boundary conditions;

G(0) = 0 (B10)
G'(0) = 1.0 | (B11)
Integrating the momentum equation once leads to;

] 2,0y
3 Gf +(C K/E)f' =0 (B12)
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where the constant of integration is zero in this case. Based on the
assumption that KZ/E remains constant across the jet and making use of

equation (BS) we can write equation (B12) as,

'—-—-—-77-E'GG +6 =0 (B13)

By integrating equation (B13) twice and making use of the condition
(B10) and (B11) we obtain;
G(g) = o tanh (£/a) (B14)

where
a=2(C, k2/g)1/2 (B15)

finally, the velocity profile is given by;
1 .
f(g) = ———— (B16)
cosh™(g/a)
Now in order to determine o we make use of the momentum integral
constraints. Substituting (B16) into (B7) and integrating the resulting

equation Teads to

dg . _a_ sinh(g/a) ‘ F 2, sinhéggag _ 1 (817)
! cosh4(g/a) 4-1 cosh3(g/a) ! 3 7 cosh(g/a ! 2C2
or
,=31
v

Where the constant C is defined by equationJ(Bs). The value of C
can be obtained from experimental data. For example, Gutmark and Wygnanski

(1976) data suggests that C = 2.306. Hence the solution for the plane jet

is given by;
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U -1

Un coshé(E/a)

uw _ o sinh(g/a)
4.0 cosh3(e/a)

RS

m

1

!6_.., — 1[4 - & sinh(2e/a)]

m 4 coshZ(E/a)

II. The Axisymmetric Jet (i=1)

where

and the momentum integral is given by;

if the centerline mean velocity decays like;

where C is an empirical constant and ¢ is given by;

For the round jet the momentum equation becomes;

[(CMKZ/E)af']: ¥ £GF' + £F% = 0

g

.e==:f Frde

0

-]

U,d 2
ffzsds (U -

o]

1)2

u.d
00
U, = C X

9.‘&1)(

then equation (B22) becomes

Integrating equation (B21) once gives

ffzgdg .

e

0

6 +(C K/EXF = 0

(B18)

(B19)

(B20)

(B21)

(B22)

(B23)

(B24)

(B25)

(B26)
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where the constant of integration is zero.
Similarity as in the two-dimensional case if we let CMKZ/E = vy

be a constant across the jet, then equation (B26) is satisfied if;

flg) = ""—]'T"—g 2 (B27)
(1+ 'g;;; £°)

If we impose the momentum integral constraint on the solution (B27) w

~can evaluate the width parameter (Q") in terms of the empirical constant

C. That is;

3

.3 (828)
"t 5

Hence the exact solution for the round jet is given by;

u . ‘ (B29)
uyv _ r
2 ac® 2.3 (830)
m 2(*—5- £°)
LA g -4 52] (B31)
U 2.2\2 3

2(1+—£ )

where C is an empirical constant (see Table 3.2)
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APPENDIX C

Initial Profiles

The eddy viscosity solution (Appendix B) predicts the velocity and,
in turn, the shear stress profile for self-preserving turbulent jets quite
well across most of the flow except near the outer edge where the profiles
are a little overestimated. However, these profiles will provide an
excellent first guess to start the similarity solution in Chapter 3 for
- the k-¢ model and Reynolds stress solution in Chapter 4.

The velocity and shear stress are given by the exact expressions
{B18),(B19), (B29) and (B30) and they are reviewed in Table (C1). The
empirical constant C associated with these profiles for the plane and
round jet can be taken from the experimental data. (See Table 3.3.)

For the present calculation an average va]ue of C is given in Table
(C2) along with some of the flow characteristics for the plane and the
round jet.

Kinetic Enerqy Estimate

It has been observed from the experimental data of the plane and
round jets (i.e. experiments listed in Table 3.2) that at some distance
outward from the symmetry axis of the jet until the outer edge of the
flow we have the following balance in the energy budget.

L T
Production = dissipation

e

Convection transport = diffusion transport

A convenient measure of this distance cited above is the value of
£ where the shear stress is a maximum which is defined here as Egs (See
Figure C1 and C2). Hence for ¢ > Eg by the first equality given above

we have

E = - g,f (c1)
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where E is the dissipation rate of energy and 9a is the shear stress.

. By the eddy viscosity hypotheses it follows that the kinetic energy

of turbulence is given by

Cgqg
K= (rmB) /2 5 g g (c2)

Figure C1 shows the eddy viscosity solution for C = 2.4 and the
estimated kinetic energy profile. For £ > £ . (the dotted line) it is
assumed that the k-profiles decrease as £+0. which is based on the experi-
mental data. On the other hand Figure (C2) shows the same results as
above but for the round jet and the k-profile is observed to be increasing

as £+0 based on the round jet data.
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Profile Plane Jet Round Jet
¢ 1 1
coshz(g 2 £) (1+% ngz)z
94 3 7 tanh( E)/f ) 73
16C 2(1+5 C%¢°)
' 8¢ )
f - 55— tanh(3 C°g)/f 16 -—-35—————-
(145 c2?)?
c §? 9 _3
u sact 32¢°
Table C1. Summary of the Eddy Viscosity Solution.

Flow Constant Plane Jet Round Jet
c 2.4 6.0
(W‘/um)max .025 .0186

£1/2 115 .093
Egs .085 .065
v, = .09 KY/E .00423 .0026

Table C2. Flow Characteristic For the Eddy Viscosity Solution.
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Figure C1. Eddy Viscosity Solution for Self-preserving
Two-dimensional Jet.
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Figure C2. Eddy Viscosity Solution for Self-preserving
Axisymmetric Jet.
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APPENDIX D

Reynolds Stress Equations in Cartesian Coordinate S ywtems

The equations for the Reynolds stress components for a general
turbulent free shear flow can be obtained from equation (2.67). For

steady state motion equation (2.67) can be written as follows;

u U
dJ. 3 - 2
Uy T Pig * T Jijk = Cyebyy * 045 - 3045 (01)

(1) (i1) (i) (iv) (v} (vi)

The convective term (i), production (ii), return to isotropy (iv)
and dissipation (vi) are straightforward and can be easily written in
component form. The diffusion transport (iii) can be evaluated from the
relations (2.69) and (2.70). The rapid term (v} can be obtained from the
foﬁrth order teﬁsor which is given by equation (2.71). Now let us consider
a two dimensional flow in which X1s Xps X3 correspond to the cartesian
coordinates x, y, and z {Figure Al) and the respective velocity components
U], UZ' U3 and UysUsslq correspond to U, V, W, and u.v.w. We assume that
there is no mean motion in the z-direction and all derivatives with respect
to z are zero. Further the shear stresses Uw = wu and Vw = wv are zero.

Based on the above assumption the dynamic equations for Reynolds stress
components bécome

x=-component:

U-BZ+ viz= -2(?

ax 3y

v ., — 3l 3 3 u 1
xtWR rxYm ty e G E(ﬁ"s’)

2
MR T o (02)
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y-component:

2 2
TELANRY: AR Yot ] AP 251 R B

3 v 1
% Vay 3X sy = ax V221 Yoyl - G &)

q2

2
+ 8pyp = 3= (D3)

z-component:

v 2¢

2 2
TELPRRTY-L. B I 3 - wo_l - L
ax T Vay T Yt ey dase ~ G s(gz- 3) * 4933 - 3 (D4)

Shear Stress:
Z oV U
(" 5% *uvgy *

2
=tV

—) + 34 + 2

3 ax “121 Si'J

YUY . 3V | 3y
ax | Yoy T y 132

uv

The transport and rapid terms in the above system of equations involve a
lot of terms. However, some of them are negligibly small compared to the
leading terms and they will be dropped out. Hence before we evaluate
these terms let us take a look at the order of magnitude of the various
terms in the above equations. However, since the terms in the proceeding
equations are similar it will be sufficient to examine equation (D5) and
the same analysis will be applicable to the rest of the equations.

Using the same scales as in Appendix A we may scale equation (D5) as

follows,
gus . yauy 23V 1] v _Zau
% T Yoy ax - Wax "Wy TtV 3y
2
e o R AR [ T
L L L L’ L L
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3d 3d
121 122 uv
ety G 7 * 4,
u £ u u
: T 1] (D6)
L

Ih the above scaling the diffusive transport and rapid term has been

represented by their largest term. From previous analysis we have,

2 2
(ﬁ-u) v = << ]
m L ‘

Hence the first term in the production is negligibly small so is the
first diffusion term. The rest of the terms are small compared to unity
but they are of the same order as the left hand side ofrthe equation.
Hence, we are keeping these terms for later analysis in Chapter 4 and 5.
Based on the above analysis and the assumption made earlier we will eval-
uate the rapid and transport terms.

Rapid Terms

The mean velocity gradients for the two-dimensional flow is given by

al al
3X ] °
- v
U q 0 L 0 (07)
0 0o 0

Hence, from equation (2.71) and (2.72) the rapid terms can be evaluated.

Based on our assumption above and with equation (D7) these terms become

2 - 2
¢,=[§5-c(‘—;_z---})1?§;(”-+§(1+zc> SRR AECRE
=
+ele- P1o7 2 (n8a)

q?



2 2
¢22=£-§b-+c<;*=-2-‘§) *C‘:=z"%‘” 720 - ese) W &
2
1 u® 1,9 2 3V
+ [+ C(q——-z- -3la" 55 (D8b)
"2' 2
b= - Ip +c<?--) +c<:=2 s D1 B cw
+[-3-0-+c( ~-§-)+c(-—---)] —)‘,’ (08¢
2 2
h * g+ (1-0) - § (180) o ] <y (08d)
Transport Terms
The transport terms are given by (see Section 2.12)
' Z E C;-2
C,-2
: 1
+ (m)(GJ(STk + Gisjk)] (DQ)

where: Gijk and Gi are given by equation (2.67) and (2.70). The non-zero

terms in the functions G ik and G are

Gj¥uvd;z+ ZUV%-E+2?;3:!- (D10a)
ez=7§J;E+2uv a""+27-§-§2 (D10b)
610 = F%ZJ, 2 uv %}-‘;l’- (D10¢)
Gppp = 3 F.g_;z (D10e)
6oy = (,7.31__2_- (b10¢)
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2 auv 2 v
G122 3y tv 3y '37'

- 2 3y o2 av© 2 3u
Y222 = Co L [3(Gy*5) V7 gy + (Gp) V7 5y
2 aw 2y — duv
+ (C2 5) vyt 2(Cy-g) uv By

~5 2 2
- 2 2w 2 aut uv
J332 Coig_ [(C2 1) v v +3C, v + 2 uv =]

2
— —_ 2
- 2 8 Zauv , 4—ave _
Moz =G L5V gy YW gy
where
1
¢ * 370 C;

Gy = 26+C; (8-957

3y

2

2

oW

ay

Ay

(D10g)

(D11a)

(D11b)

(D11c)

(D11d)

(D12)

(D13).

Finally the dynamic equations for the Reynolds stress components in

two-dimensional turbulent flow become,
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Z Z = Z 2
au sy 2U- 23U V2 u_
U sy R - 2u = 2uv & ay ay [C {v (C2+1) 3y
| +3C vzi‘zw V2 a."72_+ 2(C.+1) uv a“"}]
2 3y 3y 2

q y
7 = — 7
1 UL v_ .l 23 u__ L.
+ 4 30 + c(—-z- 3) + C(—-z. 3)] q 3y C" ("2‘ 3)
q q q
2 _2' =z 2 2
v av 23V 3 2 v 2y, 2 3u”
Usx Vo - 5yl 3(¢, sy T (G 5y
2 2
* (v B v 20, B 3 T+ ol Iy ¢ el - 3)
q
Fe -] D1 M- 4 sy D+ of- I
:f 9 3% "3 ¢ y 30 -
2 2
u 1y7.2 3V vo o1y L 2¢e
+ C(? - 3)]q ‘5')7 C'] ("—'-'-: 3) 3 (D14b)
2 "2‘ "2' —2' — .2 — 2
w W w 2 av_ 2 3u_
2 2 —
o 3] gl Lo ol - D) v el - 1o 2
2 2
q q
— —
3y ] v__ L woo 1y
+ 4¢ uv 3y 4[- KTl c(_q_z. 3) + c(a-é- 3)] %y
2
1 2
- Cie(¥s-2) - & (D14c)
18(q2 3) 3



SV , OV w23 o o B2
Usx *Vay ~ "WVt u g
2 2 2
4 — 3v §_——-au 1 —aw"
+—5‘ r’SUVW-SU y}]
2 "2'
1 v 1 2 U
+ 2[+x + (1-¢c) = - —-(1+8c)-—-—+ clq
10 qz 3 q- ay
. uv
< G 55 (D14e)

where the underlined terms are of the 2nd order and C° and C2 are given

by (D12) and {D13).
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APPENDIX E

Reynolds Stress Equations in Cylindrical Coordinate System

For the axisymmetric turbulent flow let us write equation (2.67)

in curvlinear tensor form. Setting %E'— 0 the Reynolds stress equation

can be transformed to covarient form as follows.

u";'i“J' ) Pk Jﬁj,k + Gy ebys + of] - %—sgij (E1)
where '

P =-;T‘:; Uy - :": U, " | (E2)

35 = - 0ga® I6f; + & M 0,5 - 4 (0 Ehgyyr 96,05,)]
(E3)
o = FPEE) |+ upPlag®) |+ uPlu®) | (E4)

1'1?‘3? s - -;—(b'g ag.‘ - bg &f) + -;-0- (46? 533 - ¢ gsqgij - ag.’ 59)
+ [Py + bls] + bled + 60g™; - 3 8]

% bqsp] (E5)
7wy g o, a0

and 6%. gij and g1j can be obtained by the following transformation

relations.

—

Let (x], xz

s x3) correspond to the cylindrical coordinates (r, 8, z)
and the respective mean and turbulent velocity components are (U1, U2, U3)
and,(u1, Uss u3) which correspond to (U, V, W) and(u, v, w), a], gz and a3

correspond to the cartesian coordinate (x, y, z) and the respective



velocity components are (U(1), U(2), U(3)) and (u(1), u(2), u(3)).
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we have the following transformation relations.

From tensor algebra we have,

[(eh? + (%42

"
vy

.
I

- 0, i+j

i, K =0, itk

'
:"—4
-

I}

~ kT
|2

L]
el

"
o
b

-

Ca.

—
™
=
N
[}
x
-
=
]
—t

h1 u(l) , v = h, u(2) , ws= hs u(3)

Then

(E7)
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Now let us evaluate equation (E4) while observing the tensors

differentiation. Hence,

k
—  3u.lU —_— ———
i k m
‘ujup [ 3XD Tmp U U5 = Typ U um]
k
— JU.u —
+ P [+ 7K My -
uzut [ 5%p mp Y Tip U um]
Or in component form we have
o) =32 aul u? L uv 3;5 v 3T U au2 - g U W
11 ar r 38 32 r
"7 — Wi
1 T ad® W 27 . —ardy aruy
. — e 2 +
622 =y 5T 3"V + uw =2 2r uv = ST
+2 ;2'339!-+ 2 rvw =— aruv _ 2r v2 - 2r WP
38 3z
' 2 - 2 2 — e
o T2 aw" , uv W< . — ow wu VW OWU
N _ A oW w_ + p YW WU
G33 =u r r 3 *ouw 3Z 2 uw 5= ar 2 r 38
2 auw 2 2
+ BoA-LLAg,
2w 5z = VW
o o7 O, WO, —— AW, — %, W au—2-+w
13 or r 38 9z ar r 238 /
2 3uW , UV dUW , — JUW 4 — —
4+ yo oUW UV oUW G oUW _
U sr v 38 TW3z TRuvy
GZ =170 arW+ZarW+_l_V-arW
12 r ar r 28 r 3z
—_ — — = 2
— 3 UV , 23 uv , . =3 uv 2 v
+ o_Uv , oo W, o_ UV e
u ar 1 v v/ r v 3z r u ar
—_— 7 2 — —2
uv v — 3V 2 2 2 —2
=2 uw X+ & - £ + =
r 28 Uw 57 ryuv v r U

(E8)

(E9a)

(E9b)

(E9c)

(E9d)

(E9e)



G%l = W£+%Tﬂ;-2-+?§izz+ 2—2-%:—-;‘:4- 2 %Wméj
+2"“§-§-‘!‘--§TT (E9F)
+2;2'9_r5'%'w_'+ 2r Wi;'zj (E9g)

634 BW%—:Z 3%%7%7%‘? (E9h)

G%B = %-T-g? rT+-];-2-7-g-(_)— rT+-}T-§-—Z-\T'

TR g R AR R (E91)
Consider now only axisymmetric turbulent shear flow without swirl
so that all shear stresses but (uw = wu) are zero. Further %-é- = 0. The
equations in (E9) simplify to;

6}, = 3 ?3;:3 (E10a)

6;2 81_1_2-'-3-; rz;.f- 2‘r :22
- rZTé-v; v or (BT ) (E10b)

8y, = ?Eg + 2w M (E10c)

6, = 2?2, ‘u—ég_-f- (E10d)

&, = 3-; +2 (B (E10e)

e - w -gl‘—-_z- 2% 2w (E10F)
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k _ 3 K m M ogk oopmogk
Jij k ;;E'J Tmk Y35 = Tik JmJ Tik 9

« JWhL 1z
M= T x rinty i
k
2
Kk J¥p .10 20 2
22,k Tk trdetrlnt iy,
k
g ¥ 10
3k~ ok CF a3
k
ko Mg 1
13,k 7ok T F 3T v s

‘z 7
Jn=c9-—[3(c2 ) &

Q
<{

-5——'—-2 - 2 .
+-‘;":(u 2) UZ%}-i-Zuw-g%w-}]

(E10q)

(E10n)

(E101)

(E11)

(E12a)

(E12b)

(E12¢)

(E12d)

(E13a)

(E13b)
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2 - .2
1 . 92 2 p2 oA
oy = =Cy = [r" €y 3u™ 5=+ (C,#1) {r® u® -
— 2 | oz
+ 2r (u v )1+ 2(:2 {?ar +2uw§-‘-;—g-}]
] E 7wl — o wi
J33'-0 [(Cz 1) (u -5—--+2uw-5;—)+C23u I
2 - 52
*+ G, {:Z :;’, +-§-(u2v -vz)}]
a. = ¢ 3—[2373“"+uw3?-l{a'v7£+2731‘_"‘-
13 0¢ or ar 5 ° r or
5 —_
— 3V 2 — 2 — OW
+u -é-r-;-i-—r-uwv +3uw5—r—-}]
z 7 L, 7 .=
2 _ — V- 2 2= 1 —3u_ 2 duw
'323"‘:02_[”“5'7*'?" uw - 5 {uw 5=+ 207 o0
= .
+uw9—:-+;2:57v2+3uw-gl”;—}]

2 2
] 13 9 3) ,2 au 2yp2 2
M0 % rar [ G o B3GH) vn 5+ (Gl 55

% Wl , — o, 2 27 %

Ut S 2uw o+ = (uvEevE ) T3]

W20 L.3Zal, 17l 17l
r 0ce¢ 5 ar 5u r 5 ar
2 —ouw .8 , 22 7

"‘gu --'-;—-+-5~r-;(uv-v )}

3 — 2 — 2
| SR T Q- 2 qu_ 23v
Jgp 1 =T ar [or Gy =13 Gy u” 5=+ (Cp#1) u® 5

-7 e 52
*"(Z2 1-1??-"%-+2C2 uwg—q-"-'-i-2(C2+1)—J,—(uzvz-v2 )31
e L 3Tl 4Tl 1
L 5 ar 5 r 5 ar

(E13c)

(E13d)

(E13e)

(E13f)

(E14a)

(ET4b)
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1 1l q° 2 au 2 v
J33,1 Ty oar [-r Co o= B Cu g5+ 6 um 5
23;’2 Juw
* (Cot1) u” 5=+ 2(Co+1) uw 5 -
2 77 3¢
+Cy & (VS )] (ET4c)
2 2 2
1 218 4 —au _ 1 —=—23v
J13,1 rar LT G %‘ G uw -5 uw 5
3—owl , 8 2o 21— 2
TEW SR g T gy ue vl
2 2 2 2
1 1=3u” 4 =3v 3 =M
*v 6 g- l-guw st g w5 5 W 5p
Si 2w, 81l 2 (E14d)
The Rapid Terms
The mean velocity graients Up q transform to:
al
= B _ M E15
Yp.a 7 54" Tog Un (E15)
the non zero values of U, q are given by:
ol
i 0~ 0
Up,q= 0 rU (E186)
W W
w0 3z

Hence with (E16) and (ES) the rapid terms can be evaluated and the

results are:

2 aU

-slr:.

8% = affg - cbyyla” S+ 4l- 5+ °b11 + Cbzz]

3
g (1+5¢) uw = [- —— + cb1] + cbzz]_?. W (E17a)
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2 BU

q = ___ 2
bz = AL- g5+ cbyg + cby,lq” S0+ 4[15 - cbypla” ¢

+Hc uw — + 4[- == 30 * cbyy t cbzz]q (E17b)
o3 = 40- g5+ cbyy + ‘:"33]qz W - T Cb33
+ cbyylg g- Hi+2c) w24 + a5 - cb33]q2 W (E17¢)
B9 zem Y aem ey c>:: O
CUW%% | | ' (E17e)

Final Form of the Reynolds Stress Equations

Now let us go back to the original notations as indicated in chapter 1.
Hence (U, u) are the axial components (V,v) the radial component and (W,w)
are a component of the mean and turbulence velocities respectively. Then

the final form of the stress equations is given by;

x-component

7 7 2 - .2
¥ 4 B . o U, 230 13 a 2 3v_
PV 2w gpt 2w e r -8V R
e -
2 3v 2 u UV
CZV -5;—"' (Czﬂ) \ 3?-+ 2(C2+1)UV§'Y':-
$2 (BTN - ¢ <E-‘)+4t-‘——+cb
r AV WW - Le 2 3 30 22

+cbyyJa® 3L+ 4 g5+ cbyg + “’331q :

+ 4 23U _2

*3 (1+2¢c) uv =+ 4[30 cb]1]q X " 3¢ (E18a)

——— o —— - — — — —



r-component

g~-component.
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Shear Stress

—_— — —_ 2 2
uv uv _ _— a3V 23U —3Uu_ 13 qQ 4 —du_
ax+var‘uvar'var'uT+rar[rCOs{Su r
i amal e Zaw 2152
sWar "sWsr 73 r 5
2 2 2
1 1l —~3v ,4—3W _ 3=3u_
'rco TEWatgu 5 W 3

~
¢
€
2 2osuy , 8 —w _ uw _ o — 3V —y
TEV A RN S G ity

— - — —— — —— —

2 3y — 3l
a—r_--zcuv-é—x—

U
-4 cu "3
Where the underlined terms are of 2nd order based on order of magnitude

analysis similar to that of Appendix D.

2
T §
b” = ;f- 3 (E19a)
3
1
by, = Y= - = (E19b)
2”33
2
W 1
33 q2 3
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APPENDIX F

‘Numerical Scheme

The following numerical scheme solves any set of finite difference e
equations simultaneously. This simple algorithm consists of the recursion
relations f4, f8, and f9. In order to up-date Ej and Fj in the tridiagonal-
ization, matrix inversion is required, at every node point j. Then by back
substitution (equation F4) one can solve for the unknowns at the grid point j.

Consider a set of difference equations that results from a coupled system

of differential equations, which can be, in general, written as follows.

1.1 1 1 2 2 n o .4l

1 1, . .1 2 2 noo_ 2

N 1, . 1 2 2 no_an (F1)
An1%5-1 + bnlxj + Ch1%5+1 + 12%5-1 + bnzxj oo cnnxj+1 = d

where the x*s are the unknown values of the variables at the-corresponding
grid points (i.e., j-1, j and j+! in Figure 3.2), the a's, b's and ¢'s

are the constant coefficients of the variables in questions and d's stand
for the source terms in the system of equations. The above equation (E1)

can be written in the following matrix form.

N I 7] N Hine
a7 yge--dp, xj_] b]] b22""b1n X3
3,y a %2 + {byy b b xg
21 7227 %2n |} 731 21 7227t 41T
¢ H : H : H : H
* »* . ‘n . - . n
301 3n2e**3nn || %51 bat Pp2e e +bpn X3
b U ) SENE— M- N 3 S
(F2)
— i Al
‘11 G120 G || Mg
2 _ 2
: nt n
a1 n2° """ Cnn xj+1 q
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Solution of the Set of Equations

Let us write the above system (F2) for the jth grid point as follows;

AjXjap * ByXs ¥ CyXgyq = Dy (F3)

where.Aj, Bj and Cj are the (nxn) coefficients matrices and Dj is the
constant column vector in the above system where all are evaluated at the

Jth point. The X's stand for the unknowns at the corresponding grid points
j~1; J and j+1. Now let us define,

where the matrices Fj and Ej will be determined later. If we replace j by

j=1 in equation (F4) and substitute into equation (F3) we get,

AglFgen = Ega¥y) + B5%g * Cfyu = s (F5)

or by rearranging equation (F5) becomes

If we multiply equation (E6) by the inverse of the matrix (B - A, EJ ])

the following equation for Xj will result

X. = (B - A.E, 1) (D -

-1
57 By AgEgq) 0y - AfEsq) - (By - AiEsy ki (r)

Now if we compare equation (F7) with (F4) we find that;

- -1 £8)
E; = (B - AjE;_1)7' €4 (f8)
and
-1
. = (B, - A.E. . - A.F. F9
Fy = By = AjEyn) 0y = Afyy) (F9)
| Equation (F9) can be evaluated only for j=2, ... J-1. Hence for j=]

(i.e. £=0) and j=J (z=¢ we evaluate the system of equation: (F2) using

max )
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the appropriate boundary conditions.

i) Inner Boundary (&=0)

At the inner boundary we require that
A]SO
Hence it follows from equation (F3) that
le1 +CiX, =D

and from equation (F8) and (F9) we have,

ii)  Outer Boundary (g=¢. )

At the outer boundary we require that

CJ =0

then from (f3) we have,
Ajgar * ByXg = 0y
and equations (F8) and (F9) become

E.=0

J

= - -1 - 3
Fg = (By = AjEyq) "(Dg = AjFy_q)

(F10)

(F11)

(F12)

(F13)

(F14)

(F15)

(F18)

(F17)
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